996 resultados para Light trap
Resumo:
The (He3, n) reactions on B11, N15, O16, and O18 targets have been studied using a pulsed-beam time-of-flight spectrometer. Special emphasis was placed upon the determination of the excitation energies and properties of states with T = 1 (in Ne18), T = 3/2 (in N13 and F17) and T = 2 (in Ne20). The identification of the T = 3/2 and T = 2 levels is based on the structure of these states as revealed by intensities and shapes of angular distributions. The reactions are interpreted in terms of double stripping theory. Angular distributions have been compared with plane and distorted wave stripping theories. Results for the four reactions are summarized below:
1) O16 (He3, n). The reaction has been studied at incident energies up to 13.5 MeV and two previously unreported levels in Ne18 were observed at Ex = 4.55 ± .015 MeV (Γ = 70 ± 30 keV) and Ex = 5.14 ± .018 MeV (Γ = 100 ± 40 keV).
2) B11 (He3, n). The reaction has been studied at incident energies up to 13.5 MeV. Three T = 3/2 levels in N13 have been identified at Ex = 15.068 ± .008 MeV (Γ ˂ 15 keV), Ex = 18.44 ± .04, and Ex 18.98 ± .02 MeV (Γ = 40 ± 20 keV).
3) N15 (He3, n). The reaction has been studied at incident energies up to 11.88 MeV. T = 3/2 levels in F17 have been identified at Ex = 11.195 ± .007 MeV (Γ ˂ 20 keV), Ex = 12.540 ± .010 MeV (Γ ˂ 25 keV), and Ex = 13.095 ± .009 MeV (Γ ˂ 25 keV).
4) O18 (He3, n). The reaction has been studied at incident energies up to 9.0 MeV. The excitation energy of the lowest T = 2 level in Ne20 has been found to be 16.730 ± .006 MeV (Γ ˂ 20 keV).
Angular distributions of the transitions leading to the above higher isospin states are well described by double stripping theory. Analog correspondences are established by comparing the present results with recent studies (t, p) and (He3, p) reactions on the same targets.
Resumo:
A new method for measuring the birefringence dispersion in polarization-maintaining fibers (PMFs) with high sensitivity and accuracy is presented. The method employs white-light interferences between two orthogonally polarized modes of PMFs. The group birefringence of the fiber is calibrated first. Then the birefringence dispersion and its variation along different fiber sections are acquired by analyzing the broadening of interferograms at different fiber lengths. The main sources of error are investigated. Bireffingence dispersions of two PANDA fibers at their operation wavelength are measured to be 0.011 ps/(km nm) and 0.018 ps/(km nm). A measurement repeatability of 0.001 ps/(km nm) is achieved. (C) 2007 Optical Society of America.
Resumo:
Within the wavelength range from 351 to 799 nm, the different reductions of nucleation field induced by the focused continuous laser irradiation are achieved in the 5 mol % MgO-doped congruent LiNbO3 crystals. The reduction proportion increases exponentially with decreasing irradiation wavelength and decreases exponentially with increasing irradiation wavelength. At one given wavelength, the reduction proportion increases exponentially with increasing irradiation intensity. An assumption is proposed that the reduction of nucleation field is directly related to the defect structure of crystal lattice generated by the complex coaction of incident irradiation field and external electric field. (c) 2007 American Institute of Physics.
Resumo:
Since the discovery in 1962 of laser action in semiconductor diodes made from GaAs, the study of spontaneous and stimulated light emission from semiconductors has become an exciting new field of semiconductor physics and quantum electronics combined. Included in the limited number of direct-gap semiconductor materials suitable for laser action are the members of the lead salt family, i.e . PbS, PbSe and PbTe. The material used for the experiments described herein is PbTe . The semiconductor PbTe is a narrow band- gap material (Eg = 0.19 electron volt at a temperature of 4.2°K). Therefore, the radiative recombination of electron-hole pairs between the conduction and valence bands produces photons whose wavelength is in the infrared (λ ≈ 6.5 microns in air).
The p-n junction diode is a convenient device in which the spontaneous and stimulated emission of light can be achieved via current flow in the forward-bias direction. Consequently, the experimental devices consist of a group of PbTe p-n junction diodes made from p –type single crystal bulk material. The p - n junctions were formed by an n-type vapor- phase diffusion perpendicular to the (100) plane, with a junction depth of approximately 75 microns. Opposite ends of the diode structure were cleaved to give parallel reflectors, thereby forming the Fabry-Perot cavity needed for a laser oscillator. Since the emission of light originates from the recombination of injected current carriers, the nature of the radiation depends on the injection mechanism.
The total intensity of the light emitted from the PbTe diodes was observed over a current range of three to four orders of magnitude. At the low current levels, the light intensity data were correlated with data obtained on the electrical characteristics of the diodes. In the low current region (region A), the light intensity, current-voltage and capacitance-voltage data are consistent with the model for photon-assisted tunneling. As the current is increased, the light intensity data indicate the occurrence of a change in the current injection mechanism from photon-assisted tunneling (region A) to thermionic emission (region B). With the further increase of the injection level, the photon-field due to light emission in the diode builds up to the point where stimulated emission (oscillation) occurs. The threshold current at which oscillation begins marks the beginning of a region (region C) where the total light intensity increases very rapidly with the increase in current. This rapid increase in intensity is accompanied by an increase in the number of narrow-band oscillating modes. As the photon density in the cavity continues to increase with the injection level, the intensity gradually enters a region of linear dependence on current (region D), i.e. a region of constant (differential) quantum efficiency.
Data obtained from measurements of the stimulated-mode light-intensity profile and the far-field diffraction pattern (both in the direction perpendicular to the junction-plane) indicate that the active region of high gain (i.e. the region where a population inversion exists) extends to approximately a diffusion length on both sides of the junction. The data also indicate that the confinement of the oscillating modes within the diode cavity is due to a variation in the real part of the dielectric constant, caused by the gain in the medium. A value of τ ≈ 10-9 second for the minority- carrier recombination lifetime (at a diode temperature of 20.4°K) is obtained from the above measurements. This value for τ is consistent with other data obtained independently for PbTe crystals.
Data on the threshold current for stimulated emission (for a diode temperature of 20. 4°K) as a function of the reciprocal cavity length were obtained. These data yield a value of J’th = (400 ± 80) amp/cm2 for the threshold current in the limit of an infinitely long diode-cavity. A value of α = (30 ± 15) cm-1 is obtained for the total (bulk) cavity loss constant, in general agreement with independent measurements of free- carrier absorption in PbTe. In addition, the data provide a value of ns ≈ 10% for the internal spontaneous quantum efficiency. The above value for ns yields values of tb ≈ τ ≈ 10-9 second and ts ≈ 10-8 second for the nonradiative and the spontaneous (radiative) lifetimes, respectively.
The external quantum efficiency (nd) for stimulated emission from diode J-2 (at 20.4° K) was calculated by using the total light intensity vs. diode current data, plus accepted values for the material parameters of the mercury- doped germanium detector used for the measurements. The resulting value is nd ≈ 10%-20% for emission from both ends of the cavity. The corresponding radiative power output (at λ = 6.5 micron) is 120-240 milliwatts for a diode current of 6 amps.
Resumo:
The near-infrared nonvolatile holographic recording has been realized in a doubly doped LiNbO3:Fe:Rh crystal by the traditional two-center holographic recording scheme, for the first time. The recording performance of this crystal has been investigated by recording with 633 nm red light, 752 nm red light and 799 nm near-infrared light and sensitizing with 405 nm purple light. The experimental results show that, co-doped with Fe and Rh, the near-infrared absorption and the photovoltaic coefficient of shallow trap Fe are enhanced in this LiNbO3:Fe:Rh crystal, compared with other doubly doped LiNbO3 crystals Such as LiNbO3:Fe:Mn. It is also found that the sensitizing light intensity affects the near-infrared recording sensitivity in a different way than two-center holographic recording with shorter wavelength, and the origin of experimental results is analyzed. (C) 2007 Elsevier GrnbH. All rights reserved.
Resumo:
We discuss coupling of ultrashort light pulses into waveguides by use of a prism waveguide coupler configuration. Theoretical analysis indicates that an extra loss induced by the short coherence times of ultrashort pulses, which has a strong effect on the reflected light and the optimum coupling condition, appears in the waveguide. Numerical simulations show that the reflectance strongly depends on the coherence times of ultrashort pulses. A method for realizing optimum coupling by compensating for the extra loss is proposed as well in this paper. A preliminary experiment of employing ultrashort pulses with different coherence times was carried out, and good agreement between theory and experiment was obtained. (c) 2006 Optical Society of America.
Resumo:
150 p.
Resumo:
Over the last decad , the paradigm of Total Quality Management (TQM) has been successfully forged in our business world. TQM may be defined as something that is both complex and ambiguous; nevertheless, some key elements or principles can be mentioned which are common to all of them: customer satisfaction, continuous improvement, commitment and leadership on the part of top management, involvement and support on the part of employees, teamwork, measurement via indicators and feedback. There are, in short, two main reasons for it having spread so widely: on the one hand, the successful diffusion of ISO 9000 standards for the implementation and certification of quality management systems, standards that have been associated to the TQM paradigm, and, on the other, the also successful diffusion of self evaluation models such as the EFQM promoted by the European Foundation for Quality Management and the Malcolm Baldrige National Quality Award in the USA, promoted by the Foundation for the Malcolm Baldrige National Quality Award. However, the quality movement is not without its problems as far as its mid and long term development is concerned. In this book some research findings related to these issues are presented.