859 resultados para Leaf orientation
Resumo:
The objective of this study was to investigate the effect of elevated (550 ± 17 μmol mol−1) CO2 concentration ([CO2]) on leaf ultrastructure, leaf photosynthesis and seed yield of two soybean cultivars [Glycine max (L.) Merr. cv. Zhonghuang 13 and cv. Zhonghuang 35] at the Free-Air Carbon dioxide Enrichment (FACE) experimental facility in North China. Photosynthetic acclimation occurred in soybean plants exposed to long-term elevated [CO2] and varied with cultivars and developmental stages. Photosynthetic acclimation occurred at the beginning bloom (R1) stage for both cultivars, but at the beginning seed (R5) stage only for Zhonghuang 13. No photosynthetic acclimation occurred at the beginning pod (R3) stage for either cultivar. Elevated [CO2] increased the number and size of starch grains in chloroplasts of the two cultivars. Soybean leaf senescence was accelerated under elevated [CO2], determined by unclear chloroplast membrane and blurred grana layer at the beginning bloom (R1) stage. The different photosynthesis response to elevated [CO2] between cultivars at the beginning seed (R5) contributed to the yield difference under elevated [CO2]. Elevated [CO2] significantly increased the yield of Zhonghuang 35 by 26% with the increased pod number of 31%, but not for Zhonghuang 13 without changes of pod number. We conclude that the occurrence of photosynthetic acclimation at the beginning seed (R5) stage for Zhonghuang 13 restricted the development of extra C sink under elevated [CO2], thereby limiting the response to elevated [CO2] for the seed yield of this cultivar.
Resumo:
A poplar short rotation coppice (SRC) grown for the production of bioenergy can combine carbon (C) storage with fossil fuel substitution. Here, we summarize the responses of a poplar (Populus) plantation to 6 yr of free air CO2 enrichment (POP/EUROFACE consisting of two rotation cycles). We show that a poplar plantation growing in nonlimiting light, nutrient and water conditions will significantly increase its productivity in elevated CO2 concentrations ([CO2]). Increased biomass yield resulted from an early growth enhancement and photosynthesis did not acclimate to elevated [CO2]. Sufficient nutrient availability, increased nitrogen use efficiency (NUE) and the large sink capacity of poplars contributed to the sustained increase in C uptake over 6 yr. Additional C taken up in high [CO2] was mainly invested into woody biomass pools. Coppicing increased yield by 66% and partly shifted the extra C uptake in elevated [CO2] to above-ground pools, as fine root biomass declined and its [CO2] stimulation disappeared. Mineral soil C increased equally in ambient and elevated [CO2] during the 6 yr experiment. However, elevated [CO2] increased the stabilization of C in the mineral soil. Increased productivity of a poplar SRC in elevated [CO2] may allow shorter rotation cycles, enhancing the viability of SRC for biofuel production.
Resumo:
We explore the influence of a rotating collector on the internal structure of poly(ε-caprolactone) fibres electrospun from a solution in dichloroethane. We find that above a threshold collector speed, the mean fibre diameter reduces as the speed increases and the fibres are further extended. Small-angle and wide-angle X-ray scattering techniques show a preferred orientation of the lamellar crystals normal to the fibre axis which increases with collector speed to a maximum and then reduces. We have separated out the processes of fibre alignment on the collector and the orientation of crystals within the fibres. There are several stages to this behaviour which correspond to the situations (a) where the collector speed is slower than the fibre spinning rate, (b) the fibre is mechanically extended by the rotating collector and (c) where the deformation leads to fibre fracture. The mechanical deformation leads to a development of preferred orientation with extension which is similar to the prediction of the pseudo-affine deformation model and suggests that the deformation takes place during the spinning process after the crystals have formed.
Resumo:
A series of monodomain liquid crystalline (LC) elastomers based on a polysiloxane were synthesised. These elastomers were prepared either with one or two cross-linking agents in the presence of a mechanical field. By using the real-time X-ray facility at the University of Reading (AXIS), we have shown that the nematic order parameter 〈P2 〉 is dependent on both the extension λ value and the degree of cross-linking. We have also shown that the monodomain elastomers, exhibiting permanent alignment and 〈P2 〉 values of about 0.5, can be prepared by using only one cross-linking agent making the synthesis of these monodomain LC elastomers much more simple and cost effective than that proposed by Küpfer.
Resumo:
Molecular orientation parameters have been measured for the non-crystalline component of crosslinked natural rubber samples deformed in uniaxial tension as a function of the extension ratio and of temperature. The orientation parapeters 〈P2(cosα)〉 and 〈P4(cosα)〉 were obtained by an analysis of the anisotropy of the wide-angle X-ray scattering functions. For the measurements made at high temperatures the level of crystallinity detected was negligible and the orientation-strain behaviour could be compared directly with the predictions of molecular models of rubber elasticity. The molecular orientation behaviour with strain was found to be at variance with the estimates of the affine model particularly at low and moderate strains. Extension of the crosslinked rubber at room temperature led to strain-crystallization and measurements of both the molecular orientation of the non-crystalline chains and the degree of crystallinity during extension and relaxation enabled the role of the crystallites in the deformation process to be considered in detail. The intrinsic birefringence of the non-crystalline component was estimated, through the use of the 〈P2(cosα)〉 values obtained from X-ray scattering measurements, to be 0.20±0.02.
Resumo:
Procedures for obtaining molecular orientational parameters from wide angle X-ray scattering patterns of samples of thermotropic liquid crystalline polymers are presented. The methods described are applied to an extrusion-aligned sample of a random copolyester of poly(ethylene terephthalate) (PET) and p-acetoxybenzoic acid. Values of the orientational parameters are obtained from both the interchain and intrachain maxima in the scattering pattern. The differences in the values so derived suggest some level of local rotational correlation
Resumo:
A procedure is presented for obtaining full molecular orientation information from wide angle X-ray scattering patterns of deformed non-crystalline polymers. The method is based on the analysis of experimental and calculated scattering patterns into their spherical harmonics. The results obtained for PMMA are compared with values predicted by the pseudo affine and affine deformation schemes.
WAXS studies of global molecular orientation induced in nematic liquid crystals by simple shear flow
Resumo:
Global molecular orientation function coefficients for the nematic liquid crystal 4-cyano 4'-nn -pentylbiphenyl (5CB) in shear flow are presented, being extracted from 2-dimensional Wide-Angle X-ray Scattering data. A linear increase in orientation parameter P2 is observed with a logarithmic increase in shear rate. It is proposed that this arises from an increased number of LC directors aligning to the shear axis. Upon cessation of shear flow, the anisotropy is seen to relax away completely, over a time scale which is inversely proportional to the previously applied shear rate.
Resumo:
This paper presents the results of quasi-static and dynamic testing of glass fiber-reinforced polyester leaf suspension for rail freight vehicles named Euroleaf. The principal elements of the suspension's design and manufacturing process are initially summarized. Comparison between quasi-static tests and finite element predictions are then presented. The Euroleaf suspension have been mounted on a tipper wagon and tested dynamically at tare and full load on a purpose-built shaker rig. A shaker rig dynamic testing methodology has been pioneered for rail vehicles, which follows closely road vehicle suspension dynamic testing methodology. The use and evaluation of this methodology have demonstrated that the Euroleaf suspension is dynamically much softer than steel suspensions even though it is statically much stiffer. As a consequence, the suspension dynamic loading at laden loading conditions is reduced compared to the most advanced steel leaf suspension over shaker rig track tests.
Resumo:
Mannitol is a polymorphic pharmaceutical excipient, which commonly exists in three forms: alpha, beta and delta. Each polymorph has a needle-like morphology, which can give preferred orientation effects when analysed by X-ray powder diffractometry (XRPD) thus providing difficulties for quantitative XRPD assessments. The occurrence of preferred orientation may be demonstrated by sample rotation and the consequent effects on X-ray data can be minimised by reducing the particle size. Using two particle size ranges (less than 125 and 125–500�microns), binary mixtures of beta and delta mannitol were prepared and the delta component was quantified. Samples were assayed in either a static or rotating sampling accessory. Rotation and reducing the particle size range to less than�125 microns halved the limits of detection and quantitation to 1 and 3.6%, respectively. Numerous potential sources of assay errors were investigated; sample packing and mixing errors contributed the greatest source of variation. However, the rotation of samples for both particle size ranges reduced the majority of assay errors examined. This study shows that coupling sample rotation with a particle size reduction minimises preferred orientation effects on assay accuracy, allowing discrimination of two very similar polymorphs at around the 1% level