866 resultados para Lamellar microstructure


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Y2O3 is a c-type rare earth oxide with a fluorite-related structure. This material has been used to refractory because of its high thermal stability and excellent resistance to hydration. In this study, the effective index was suggested in order to improve the electrolytic properties of Y2O3-based oxide. (CexY1-x)(2)O3+delta (x = 0.25 and 0.3) and [LaaSrbCe0.25Y(1-a-b)](2)O3+delta (a = 0.05, 0.1 and 0.15, b = 0, 0.006 and 0.0125) were prepared as the examples with intermediate and high index, respectively. The specimens with high index value such as (La0.15Ce0.25Y0.60)(2)O-3.25 and (La0.1Sr0.0125Ce0.25Y0.6375)(2)O-3.24 consisted of two phases such as c-type and fluorite, although (Ce0.25Y0.75)(2)O-3.25 with intermediate index value had a single phase of c-type rare earth oxide. Microanalysis indicates that a grain in the (La0.1Sr0.0125Ce0.25Y0.6375)(2)O-3.23(7) sintered body consists of c-type and fluorite phases. An interface between c-type and fluorite phases is coherent in a grain. This suggests that this effective index guides the crystal structure in the specimen to fluorite and the examined composition introduces the interface between c-type and fluorite in the microstructure. The electrochemical properties of specimens including Y2O3 were characterized on the basis of the suggested index. The electrical conductivity of Y2O3-based materials increased with an increase of the index. The apparent activation energy of Y2O3-based materials decreased with increasing index. The ionic transport number of oxygen of the specimens was improved by enhancement of the index, confirming validity of the index. The oxide ionic conductive region of (La0.1Sr0.0125Ce0.25Y0.(6375))(2)O-3.23(7) with high effective index extended up to P-O2 = 10(-18) atm at 800 degreesC, although the specimens with low or intermediate index showed p- or n-type semi-conduction in the same P-O2 region at 800 and 1000 degreesC. These results suggest that the interface between c-type and fluorite phases also contributes to improve the electrolytic properties in the grain. It is concluded that the improvement of electrolytic properties in Y2O3-based materials is attributable to the microstructure with interface between two phases in a grain and the fluorite structure guided by the suggested index. (C) 2001 Published by Elsevier Science B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most cellular solids are random materials, while practically all theoretical structure-property results are for periodic models. To be able to generate theoretical results for random models, the finite element method (FEM) was used to study the elastic properties of solids with a closed-cell cellular structure. We have computed the density (rho) and microstructure dependence of the Young's modulus (E) and Poisson's ratio (PR) for several different isotropic random models based on Voronoi tessellations and level-cut Gaussian random fields. The effect of partially open cells is also considered. The results, which are best described by a power law E infinity rho (n) (1<n<2), show the influence of randomness and isotropy on the properties of closed-cell cellular materials, and are found to be in good agreement with experimental data. (C) 2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives. The purpose of this study was to investigate the effect of light-curing protocol on degree of conversion (DC), volume contraction (C), elastic modulus (E), and glass transition temperature (T(g)) as measured on a model polymer. It was a further aim to correlate the measured values with each other. Methods. Different light-curing protocols were used in order to investigate the influence of energy density (ED), power density (PD), and mode of cure on the properties. The modes of cure were continuous, pulse-delay, and stepped irradiation. DC was measured by Raman micro-spectroscopy. C was determined by pycnometry and a density column. E was measured by a dynamic mechanical analyzer (DMA), and T(g) was measured by differential scanning calorimetry (DSC). Data were submitted to two-and three-way ANOVA, and linear regression analyses. Results. ED, PD, and mode of cure influenced DC, C, E, and T(g) of the polymer. A significant positive correlation was found between ED and DC (r = 0.58), ED and E (r = 0.51), and ED and T(g) (r = 0.44). Taken together, ED and PD were significantly related to DC and E. The regression coefficient was positive for ED and negative for PD. Significant positive correlations were detected between DC and C (r = 0.54), DC and E (r = 0.61), and DC and T(g) (r = 0.53). Comparisons between continuous and pulse-delay modes of cure showed significant influence of mode of cure: pulse-delay curing resulted in decreased DC, decreased C, and decreased T(g). Influence of mode of cure, when comparing continuous and step modes of cure, was more ambiguous. A complex relationship exists between curing protocol, microstructure of the resin and the investigated properties. The overall performance of a composite is thus indirectly affected by the curing protocol adopted, and the desired reduction of C may be in fact a consequence of the decrease in DC. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to evaluate the bone repair along a mandibular body osteotomy after using a 2.0 miniplate system. Nine adult mongrel dogs were subjected to unilateral continuous defect through an osteotomy between the mandibular 3rd and 4th premolars. Two four-hole miniplates were placed in accordance with the Arbeitgeimeinschaft fur Osteosynthesefragen Manual. Miniplates adapted to the alveolar processes were fixed monocortically with 6.0-mm-length titanium alloy self-tapping screws, whereas miniplates placed near the mandible bases were fixed bicortically. At 2, 6 and 12 weeks, three dogs were sacrificed per period, and the osteotomy sites were removed, divided into three thirds (Tension Third, TT; Intermediary Third, IT; Compression Third, CT) and prepared for conventional and polarized light microscopy. At 6 weeks, while the CT repaired faster and showed bone union by woven bone formation, the TT and IT exhibited a ligament-like fibrous connective tissue inserted in, and connecting, newly formed woven bone overlying the parent lamellar bone edges. At 12 weeks, bone repair took place at all thirds. Histometrically, proportions of newly formed bone did not alter at TT, IT and CT, whereas significantly enhanced bone formation was observed for the 12-week group, irrespective of the third. The results demonstrated that although the method used to stabilize the mandibular osteotomy allowed bone repair to occur, differences in the dynamics of bone healing may take place along the osteotomy site, depending on the action of tension and compression forces generated by masticatory muscles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent advances in several experimental techniques have enabled detailed structural information to be obtained for floating (Langmuir) monolayers and Langmuir-Blodgett films. These techniques are described briefly and their application to the study of films of fatty acids and their salts is discussed. Floating monolayers on aqueous subphases have been shown to possess a complex polymorphism with phases whose structures may be compared to those of smectic mesophases. However, only those phases that exist at high surface pressures are normally used in Langmuir-Blodgett (LB) deposition. In single LB monolayers of fatty acids and fatty acid salts the acyl chains are in the all-cans conformation with their long axes normal to the substrate. The in-plane molecular packing is hexagonal with long-range bond orientational order and short-range positional order: known as the hexatic-B structure. This structure is found irrespective of the phase of the parent floating monolayer. The structures of multilayer LB films are similar to the structures of their bulk crystals, consisting of stacked bilayer lamellae. Each lamella is formed from two monolayers of fatty acid molecules or ions arranged head to head and held together by hydrogen bonding between pairs of acids or ionic bonding through the divalent cations. With acids the acyl chains are tilted with respect to the substrate normal and have a monoclinic structure, whereas the salts with divalent cations may have the chains normal to the substrate or tilted. The in-plane structures are usually centred rectangular with the chains in the trans conformation and packed in a herringbone pattern, Multilayer films of the acids show only a single-step order-disorder transition at the malting point, This temperature tends to rise as the number of layers increases. Complex changes occur when multilayer films of the salts are heated. Disorder of the chains begins at low temperatures but the arrangement of the head groups does not alter until the melting temperature is reached, Slow heating to a temperature just below the melting temperature gives, with some salts, a radical change in phase. The lamellar structure disappears and a new phase consisting of cylindrical rods lying parallel to the substrate surface and stacked in a hexagonal pattern is formed, In each rod the cations are aligned along the central axis surrounded by the disordered acyl chains. (C) 2001 Elsevier Science B,V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Differential scanning calorimetric (DSC) and thermogravimetric analysis (TGA) have been used to study the thermal decomposition, the melting behavior and low-temperature transitions of copolymers obtained by radiation-induced grafting of styrene onto poly (tetrafluoroethylene- perfluoropropylvinylether) (PFA) substrates. PFA with different contents of perfluoropropylvinylether (PPVE) as a comonomer have been investigated. A two step degradation pattern was observed from TGA thermograms of all the grafted copolymers, which was attributed to degradation of PSTY followed by the degradation of the PFA backbone at higher temperature. One broad melting peak can be identified for all copolymers, which has two components in the samples with higher PPVE content. The melting peak, crystal-crystal transition and the degree of crystallinity of the grafted copolymers increases with radiation grafting up to 50 kGy, followed by a decrease at higher doses. No such decrease was observed in the ungrafted PFA samples after irradiation. This indicated that the changes in the heats of transitions and crystallinity at low doses are due to the radiation effects on the microstructure of PFA (chain scission), whereas at higher doses the grafted PSTY is the driving force behind these changes. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Lewis dwarf (DW) rat was used as a model to test the hypothesis that growth hormone (GH) is permissive for new bone formation induced by mechanical loading in vivo. Adult female Lewis DW rats aged 6.2 +/- 0.1 months (187 +/- 18 g) were allocated to four vehicle groups (DW), four GH treatment groups at 32.5 mug/100 g body mass (DWGH1), and four GH treatment groups at 65 mug/100 g (DWGH2). Saline vehicle or GH was injected intraperitoneally (ip) at 6:30 p.m. and 6:30 a.m. before mechanical loading of tibias at 7:30 a.m. A single period of 300 cycles of four-point bending was applied to right tibias at 2.0 Hz, and magnitudes of 24, 29, 38, or 48N were applied. Separate strain gauge analyses in 5 DW rats validated the selection of loading magnitudes. After loading, double-label histomorphometry was used to assess bone formation at the periosteal surface (Ps.S) and endocortical surface (Ec.S) of tibias. Comparing left (unloaded) tibias among groups, GH treatment had no effect on bone formation. Bone formation in tibias in DW rats was insensitive to mechanical loading. At the Ec.S, mechanically induced lamellar bone formation increased in the DWGH2 group loaded at 48N (p < 0.05), and no significant increases in bone formation were observed among other groups. The percentage of tibias expressing woven bone formation (Wo.B) at the Ps.S was significantly greater in the DWGH groups compared with controls (p < 0.05). We concluded that GH influences loading-related bone formation in a permissive manner and modulates the responsiveness of bone tissue to mechanical stimuli by changing thresholds for bone formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesoporous Ti-substituted aluminophosphates (AlPOs) with a hexagonal, cubic and lamellar pore structure, characteristic of MCM-41, MCM-48, and MCM-50, respectively, were synthesized. The stability of these mesophases upon template removal was studied. The pore structures, surface properties, and local atom environments of Al, P, and Ti of the hexagonal and cubic Ti-containing mesoporous products were extensively characterized using X-ray diffraction, magic angle spinning nuclear magnetic resonance, AAS, XPS, ultraviolet–visible, and adsorption of nitrogen and water vapor techniques while the lamellar mesophase was not further characterized due to its very poor thermal stability. Ti-containing mesoporous AlPO materials show a reasonable thermal stability upon template removal, a hydrophilic surface property, and high porosity showing application potentials in catalytic oxidation of hydrocarbons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nucleation and growth of the eutectic, in hypoeutectic Al-Si foundry alloys has been investigated by the electron backscatter diffraction (EBSD) mapping technique using a scanning electron microscope (SEM). Sample preparation procedures for optimizing mapping have been developed. To obtain a sufficiently smooth surface from a cast Al-Si eutectic microstructure for EBSD mapping, an appropriate preparation technique by ion milling was developed and applied instead of conventional electropolishing. By comparing the orientation of the aluminum in the eutectic to that of the surrounding primary aluminum dendrites, the growth mechanism of the eutectic can be determined. Two different results were found, in isolation or sometimes together, but distinct for different strontium contents: (1) crystallographic orientations of aluminum in eutectic and surrounding primary dendrites are identical, and (2) wide variation in orientations of the aluminum in the eutectic. (C) 2001 Elsevier Science Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of metal-matrix composites were formed by extrusion freeform, fabrication of a sinterable aluminum alloy in combination with silicon carbide particles and whiskers, carbon fibers, alumina particles, and hollow flyash cenospheres. Silicon carbide particles were most successful in that the composites retained high density with up to 20 vol% of reinforcement and the strength approximately doubles over the strength of the metal matrix alone. Comparison with simple models suggests that this unexpectedly high degree of reinforcement can be attributed to the concentration of small silicon carbide particles around the larger metal powder. This fabrication method also allows composites to be formed with hollow spheres that cannot be formed by other powder or melt methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aluminium alloys that contain Si, Mg, Fe, Mn and/or Cu usually contain one or more types of intermetallic phases that are not readily distinguishable in the microstructure by conventional microscopy methods. It has thus been a challenge to develop a method that will unambiguously identify them. A practical approach has been developed that is based on an inherent linear relationship revealed for the overall distribution of any two elements in a precipitate/matrix geometry and the first-order approximation of electron probe microanalysis (EPMA) results. Application of this approach to a direct chill cast 6082 alloy is demonstrated, and its major limitations are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research is part of a project whose scope was to investigate the engineering properties of new non-commercial alloy formulations based on the Cu rich corner of the Cu-Fe-Cr ternary system with the primary aim of exploring the development of a new cost-effective high-strength, high-conductivity copper alloy. Promising properties have been measured for the following alloys: Cu-0.7wt%Cr-0.3wt%Fe and Cu-0.7wt%Cr-2.0wt%Fe. This paper reports on the microstructural characterisation of these alloys and discusses the mechanical and electrical properties of these alloys in terms of their microstructure, particularly the formation of precipitates. These alloys have evinced properties that warrant further investigation. Cost modelling has shown that Cu-0.7wt%Cr-0.3wt%Fe is approximately 25% cheaper to produce than commercial Cu-1%Cr. It has also been shown to be more cost efficient on a yield stress and % IACS per dollar basis. The reason for the cost saving is that the Cu-0.7%Cr-0.3%Fe alloy can be made with low carbon ferro-chrome additions as the source of chromium rather than the more expensive Cu-Cr master-alloy. For applications in which cost is one of the primary materials selection criteria, it is envisaged that there would be numerous applications in both cast and wrought form, where the Cu-0.7%Cr-0.3%Fe alloy would be more suitable than Cu-1%Cr. (C) 2001 Kluwer Academic Publishers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In situ gelatin zymography is a simple technique providing valuable information about the cellular and tissue localization of gelatinases. Until recently, the use of this technique has been confined to soft, relatively homogeneous tissue. In this report in situ zymography has been utilized to assess the sub-lamellar location of gelatinases in the hard, semi-keratinized epidermal layer and the adjacent soft connective tissue matrix of the dermis of the equine hoof. We show that alterations in the orientation at which the tissue is dipped and withdrawn from the emulsion cause profound alterations in emulsion thickness. Microscopic Variations in the surface topography of frozen tissue sections also influence emulsion thickness making interpretation of the results difficult. Given these results, researchers must be aware of potential variations in zymographic analysis may be influenced by physical tissue parameters in addition to suspected gelatinase activity. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Utilizing an in vitro laminitis explant model, we have investigated how bacterial broth cultures and purified bacterial proteases activate matrix metalloproteinases (MMPs) and alter structural integrity of cultured equine lamellar hoof explants. Four Gram-positive Streptococcus spp. and three Gram-negative bacteria all induced a dose-dependent activation of MMP-2 and MMP-9 and caused lamellar explants to separate. MMP activation was deemed to have occurred if a specific MMP inhibitor, batimastat, blocked MMP activity and prevented lamellar separation. Thermolysin and streptococcal pyrogenic exotoxin B (SpeB) both separated explants dose-dependently but only thermolysin was inhibitable by batimastat or induced MMP activation equivalent to that seen with bacterial broths. Additionally, thermolysin and broth MMP activation appeared to be cell dependent as MMP activation did not occur in isolation. These results suggest the rapid increase in streptococcal species in the caecum and colon observed in parallel with carbohydrate induced equine laminitis may directly cause laminitis via production of exotoxin(s) capable of activating resident MMPs within the lamellar structure. Once activated, these MMPs can degrade key components of the basement membrane (BM) hemidesmosome complex, ultimately separating the BM from the epidermal basal cells resulting in the characteristic laminitis histopathology of hoof lamellae. While many different causative agents have been evaluated in the past, the results of this study provide a unifying aetiological mechanism for the development of carbohydrate induced equine laminitis. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Doped ceria (CeO2) compounds are fluorite type oxides that show oxygen ionic conductivity higher than yttria stabilized zirconia, in oxidizing atmosphere. In order to improve the conductivity, the effective index was suggested to maximize the oxygen ionic conductivity in doped CeO2 based oxides. In addition, the true microstructure of doped CeO2 was observed at atomic scale for conclusion of conduction mechanism. Doped CeO2 had small domains (10-50 nm) with ordered structure in a grain. It is found that the electrolytic properties strongly depended on the nano-structural feature at atomic scale in doped CeO2 electrolyte.