950 resultados para LOW-FREQUENCY FLUCTUATIONS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Behavioural stress facilitates long-term depression in Schaffer collaterals-CAI pathway, but it is unknown whether it influences long-term depression in temporoammonic fibres-CAI. Here, we report that low-frequency stimulation induced long-term depression

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Measurement of acceleration in dynamic tests is carried out routinely, and in most cases, piezoelectric accelerometers are used at present. However, a new class of instruments based on MEMS technology have become available and are gaining use in many applications due to their small size, low mass and low-cost. This paper describes a centrifuge lateral spreading experiment in which MEMS and piezoelectric accelerometers were placed at similar depths. Good agreement was obtained when the instruments were located in dense sands, but significant differences were observed in loose, liquefiable soils. It was found that the performance of the piezoelectric accelerometer is poor at low frequency, and that the relative phase difference between the piezoelectric and MEMS accelerometer varies significantly at low frequency. © 2010 Taylor & Francis Group, London.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Powering electronics without depending on batteries is an open research field. Mechanical vibrations prove to be a reliable energy source, but low-frequency broadband vibrations cannot be harvested effectively using linear oscillators. This article discusses an alternative for harvesting such vibrations, with energy harvesters with two stable configurations. The challenges related to nonlinear dynamics are briefly discussed. Different existing designs of bistable energy harvesters are presented and classified, according to their feasibility for miniaturization. A general dynamic model for those designs is described. Finally, an extensive discussion on quantitative measures of evaluating the effectiveness of energy harvesters is accomplished, resulting in the proposition of a new dimensionless metric suited for a broadband analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper is aimed at enabling the confident use of existing model test facilities for ultra deepwater application without having to compromise on the widely accepted range of scales currently used by the floating production industry. Passive line truncation has traditionally been the preferred method of creating an equivalent numerical model at reduced depth; however, these techniques tend to suffer in capturing accurately line dynamic response and so reproducing peak tensions. In an attempt to improve credibility of model test data the proposed truncation procedure sets up the truncated model, based on line dynamic response rather than quasi-static system stiffness. The upper sections of each line are modeled in detail, capturing the wave action zone and all coupling effects with the vessel. These terminate to an approximate analytical model that aims to simulate the remainder of the line. Stages 1 & 2 are used to derive a water depth truncation ratio. Here vibration decay of transverse elastic waves is assessed and it is found that below a certain length criterion, the transverse vibrational characteristics for each line are inertia driven, hence with respect to these motions the truncated model can assume a linear damper whose coefficient depends on the local line properties and vibration frequency. Stage 3 endeavors to match the individual line stiffness between the full depth and truncated models. In deepwater it is likely that taut polyester moorings will be used which are predominantly straight and have high axial stiffness that provides the principal restoring force to static and low frequency vessel motions. Consequently, it means that the natural frequencies of axial vibrations are above the typical wave frequency range allowing for a quasi-static solution. In cases of exceptionally large wave frequency vessel motions, localized curvature at the chain seabed segment and tangential skin drag on the polyester rope can increase dynamic peak tensions considerably. The focus of this paper is to develop an efficient scheme based on analytic formulation, for replicating these forces at the truncation. The paper will close with an example case study of a single mooring under extreme conditions that replicates exactly the static and dynamic characteristics of the full depth line. Copyright © 2012 by the International Society of Offshore and Polar Engineers (ISOPE).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vibration modes of a submerged hull are excited by fluctuating forces generated at the propeller and transmitted to the hull via the propeller-shafting system. The low frequency hull vibrational modes result in significant sound radiation. This work investigates the reduction of the far-field radiated sound pressure by optimising the connection point of the shafting system to the hull. The submarine hull is modelled as a fluid loaded cylindrical hull with truncated conical shells at each end. The propeller-shafting system consists of the propeller, shaft, thrust bearing and foundation, and is modelled in a modular approach using a combination of spring-mass-damper elements and continuous systems (beams, plates, shells). The foundation is attached to the stern side end plate of the hull, which is modelled as a circular plate coupled to an annular plate. By tuning the connection radius of the foundation to the end plate, the maximum radiated noise in a given frequency range can be minimised.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Metal foams fabricated via sintering offer novel mechanical and acoustic properties. Previously, polymer foams have been used as a means of absorbing acoustic energy. However, the structural applications of these foams are limited. The metal sintering approach offers a cost-effective means for the mass-production of open-cell metal foams. The static flow resistance of sintered metal foams was characterized for a range of practical pore sizes and porosities. The measured values for the flow resistance were subsequently used in a phenomenological acoustic model to predict the impedances and propagation constants of the foams. The predictions were then compared to acoustic measurements. At low frequencies (0-1000Hz), the phenomenological model captures the magnitude and frequency dependence of the absorption. At higher frequencies, as expected, the phenomenological model underpredicted the acoustic properties of the foams. However, an alternative microstructural model demonstrated good correlation to the measured results in this frequency range. The effects of foam type and arrangement on the absorption pattern were examined. General trends were identified for enhancing the low frequency performance of an acoustic absorber incorporating sintered foams.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acoustic communication in drosophilid flies is based on the production and perception of courtship songs, which facilitate mating. Despite decades of research on courtship songs and behavior in Drosophila, central auditory responses have remained uncharacterized. In this study, we report on intracellular recordings from central neurons that innervate the Drosophila antennal mechanosensory and motor center (AMMC), the first relay for auditory information in the fly brain. These neurons produce graded-potential (nonspiking) responses to sound; we compare recordings from AMMC neurons to extracellular recordings of the receptor neuron population [Johnston's organ neurons (JONs)]. We discover that, while steady-state response profiles for tonal and broadband stimuli are significantly transformed between the JON population in the antenna and AMMC neurons in the brain, transient responses to pulses present in natural stimuli (courtship song) are not. For pulse stimuli in particular, AMMC neurons simply low-pass filter the receptor population response, thus preserving low-frequency temporal features (such as the spacing of song pulses) for analysis by postsynaptic neurons. We also compare responses in two closely related Drosophila species, Drosophila melanogaster and Drosophila simulans, and find that pulse song responses are largely similar, despite differences in the spectral content of their songs. Our recordings inform how downstream circuits may read out behaviorally relevant information from central neurons in the AMMC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper theoretically investigates the application of tuned vibration absorbers and hybrid passive/active inertial actuators to reduce the vibrational responses of plates and shells. The passive/active actuators are initially applied to a simple plate. A model of a submerged hull consisting of a ring stiffened finite cylinder with bulkheads and external fluid loading is then considered. The fluctuating forces from the propeller result in excitation of the low frequency global hull modes. Inertial actuators and tuned vibration absorbers are located at each end of the hull and in circumferential arrays to reduce the hull structural response at its axial resonances. The control performance of the hybrid passive/active inertial actuator, where the passive component is tuned to a structural resonance, is compared to the attenuation achieved by a fully passive tuned vibration absorber. This work shows the potential of using hybrid passive/active inertial actuators to attenuate the global structural responses of a submerged vessel.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Active vibration control of a submerged hull is presented. A submarine hull can be idealised as a ring stiffened finite cylinder with applied fluid loading. At low frequencies, rotation of the propeller results in discrete tones at the blade passing frequency and its harmonics. The low frequency axial and radial vibration modes of the submerged body can result in a high level of radiated noise. Global hull modes are difficult to attenuate since passive control techniques such as damping materials are not practical due to size and weight constraints. This work investigates active vibration control of a submarine hull for attenuation of the structural and acoustic responses. Based on a feedforward algorithm at tonal frequencies, active vibration suppression of the axial and radial hull displacements are investigated. The effect of the various control arrangements on the structure-borne radiated noise is examined. Numerical simulations of the control performance are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High brightness trans-reflective bi-stable displays based on smectic A (SmA) liquid crystals (LCs) can have nearly perfect transparency in the clear state and very high reflection in the scattered state. Because the LC material in use is stable under UV radiation, this kind of displays can stand for strong day-light and therefore be ideal for outdoor applications from e-books to public signage and advertisement. However, the colour application has been limited because the traditional colourants in use are conventional dyes which are lack of UV stability and that their colours are easily photo bleached. Here we present a colour SmA display demonstrator using pigments as colourant. Mixing pigments with SmA LCs and maintain the desirable optical switching performance is not straightforward. We show here how it can be done, including how to obtain fine sized pigment nano-particles, the effects of particle size and size distribution on the display performance. Our optimized pigments/SmA compositions can be driven by a low frequency waveform (∼101Hz) to a scattered state to exhibit colour while by a high frequency waveform (∼103Hz) to a cleared state showing no colour. Finally, we will present its excellent UV life-time (at least >7.2 years) in comparison with that of dye composition (∼2.4 years). The complex interaction of pigment nano-particles with LC molecules and the resulting effects on the LC electro-optical performances are still to be fully understood. We hope this work will not only demonstrate a new and practical approach for outdoor reflective colour displays but also provide a new material system for fundamental liquid crystal colloid research work. © 2012 SPIE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The low frequency vibrational spectrum of cluster beam deposited carbon films was studied by Brillouin light scattering. In thin films the values of both bulk modulus and shear modulus has been estimated from the shifts of surface phonon peaks. The values found indicate a mainly sp2 coordinated random network with low density. In thick films a bulk longitudinal phonon peak was detected in a spectral range compatible with the value of the index of refraction and of the elastic constants of thin films. High surface roughness, combined with a rather strong bulk central peak, prevented the observation of surface phonon features. © 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Our recent efforts of using large-eddy simulation (LES) type methods to study complex and realistic geometry single stream and co-flow nozzle jets and acoustics are summarized in this paper. For the LES, since the solver being used tends towards having dissipative qualities, the subgrid scale (SGS) model is omitted, giving a numerical type LES (NLES). To overcome near wall streak resolution problems a near wall RANS (Reynolds averaged Navier-Stokes) model is smoothly blended in the LES making a hybrid RANS-NLES approach. Several complex nozzle geometries including the serrated (chevron) nozzle, realistic co-axial nozzles with eccentricity, pylon and wing-flap are discussed. The hybrid RANS-NLES simulations show encouraging predictions for the chevron jets. The chevrons are known to increase the high frequency noise at high polar angles, but decrease the low frequency noise at lower angles. The deflection effect of the potential core has an important mechanism of noise reduction. As for co-axial nozzles, the eccentricity, the pylon and the deployed wing-flap are shown to influence the flow development, especially the former to the length of potential core and the latter two having a significant impact on peak turbulence levels and spreading rates. The studies suggest that complex and real geometry effects are influential and should be taken into count when moving towards real engine simulations. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A review of computational aeroacoustics (CCA) was made for application in electronics cooler noise. Computational aeroacoustics encompasses all numerical methods where the purposes is to predict the noise emissions from a simulated flow. Numerical simulation of the flow inside and around heat sinks and fans can lead to a prediction of the emitted noise while they are still in the design phase. Direct CCA is theoretically the best way to predict flow-based acoustic phenomena numerically. It is typically used only for low-frequency sound prediction. The boundary element method offers low computational cost and does not use a computational grid, but instead use vortex-surface calculations to determine tonal noise. Axial fans are commonly used to increase the airflow and thus the heat transfer over the heat sinks within the computer cases. Very detailed source simulations in the fan and heat sink region coupled with the use of analogy methods could result in excellent simulation results with a reasonable computational effort.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have studied numerically and experimentally the magnetic flux penetration in high-Tc superconducting tube subjected to a uniform magnetic field parallel to its long axis. This study is carried in view of designing low-frequency magnetic shields by exploiting the diamagnetic properties of high-Tc superconducting ceramics. We have measured the field attenuation for applied magnetic fields in the frequency range 5 mHz-0.1 Hz by Hall probe measurements and at audio frequencies using a sensing coil. A simple 1D analysis using the Kim critical state model was found to be able to reproduce the experimental data satisfactorily. We have also determined the phase shift between the internal and the applied field both experimentally and numerically. Finally, we have studied the sweep rate dependence of the magnetic shielding properties, using data recorded either at several constant sweep rates dB /dt or at several AC fields of various amplitudes and frequencies. Both methods agree with each other and lead to a n-value of the E ∼ Jn law equal to ∼40 at 77 K. © 2009 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An accurate description of sound propagation in a duct is important to obtain the sound power radiating from a source in both near and far fields. A technique has been developed and applied to decompose higher-order modes of sound emitted into a duct. Traditional experiments and theory based on two-sensor methods are limited to the plane-wave contribution to the sound field at low frequency. Due to the increase in independent measurements required, a computational method has been developed to simulate sensitivities of real measurements (e.g., noise) and optimize the set-up. An experimental rig has been constructed to decompose the first two modes using six independent measurements from surface, flush-mounted microphones. Experiments were initially performed using a loudspeaker as the source for validation. Subsequently, the sound emitted by a mixed-flow fan has been investigated and compared to measurements made in accordance with the internationally standardized in-duct fan measurement method. This method utilizes large anechoic terminations and a procedure involving averaging over measurements in space and time to account for the contribution from higher-order modes. The new method does not require either of these added complications and gives detail about the underlying modal content of the emitted sound.