982 resultados para LI-LIKE IONS
Resumo:
Li contents [Li] and isotopic composition (delta Li-7) of mafic minerals (mainly amphibole and clinopyroxene) from the alkaline to peralkaline Ilimaussaq plutonic complex, South Greenland, track the behavior of Li and its isotopes during magmatic differentiation and final cooling of an alkaline igneous system. [Li] in amphibole increase from < 10 ppm in Caamphiboles of the least differentiated unit to >3000 ppm in Na-amphiboles of the highly evolved units. In contrast, [Li] in clinopyroxene are comparatively low (<85 ppm) and do not vary systematically with differentiation. The distribution of Li between amphibole and pyroxene is controlled by the major element composition of the minerals (Ca-rich and Na-rich, respectively) and changes in oxygen fugacity (due to Li incorporation via coupled substitution with ferric iron) during magmatic differentiation. delta(7) Li values of all minerals span a wide range from + 17 to - 8 parts per thousand, with the different intrusive units of the complex having distinct Li isotopic systematics. Amphiboles, which dominate the Li budget of whole-rocks from the inner part of the complex, have constant delta Li-7 of + 1.8 +/- 2.2 parts per thousand (2 sigma, n = 15). This value reflects a homogeneous melt reservoir and is consistent with their mantle derivation, in agreement with published O and Nd isotopic data. Clinopyroxenes of these samples are consistently lighter, with Delta Li-7(amph-cpx). as large as 8 parts per thousand and are thus not in Li isotope equilibrium. These low values probably reflect late-stage diffusion of Li into clinopyroxene during final cooling of the rocks, thus enriching the clinopyroxene in 6 Li. At the margin of the complex delta(7) Li in the syenites increases systematically, from +2 to high values of + 14 parts per thousand. This, coupled with the observed Li isotope systematics of the granitic country rocks, reflects post-magmatic open-system processes occurring during final cooling of the intrusion. Although the shape and magnitude of the Li isotope and elemental profiles through syenite and country rock are suggestive of diffusion-driven isotope fractionation, they cannot be modeled by one-dimensional diffusive transport and point to circulation of a fluid having a high 67 Li value (possibly seawater) along the chilled contact. In all, this study demonstrates that Li isotopes can be used to identify complex fluid- and diffusion-governed processes taking place during the final cooling of such rocks. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
Trypanosoma evansi contains protein kinases capable of phosphorylating endogenous substrates with apparent molecular masses in the range between 20 and 205 kDa. The major phosphopolypeptide band, pp55, was predominantly localized in the particulate fraction. Anti-alpha and anti-beta tubulin monoclonal antibodies recognized pp55 by Western blot analyses, suggesting that this band corresponds to phosphorylated tubulin. Inhibition experiments in the presence of emodin, heparin, and 2,3-bisphosphoglycerate indicated that the parasite tubulin kinase was a casein kinase 2 (CK2)-like activity. GTP, which can be utilized instead of ATP by CK2, stimulated rather than inactivated the phosphorylation of tubulin in the parasite homogenate and particulate fraction. However, GTP inhibited the cytosolic CK2 responsible for phosphorylating soluble tubulin and other soluble substrates. Casein and two selective peptide substrates, P1 (RRKDLHDDEEDEAMSITA) for casein kinase (CK1) and P2 (RRRADDSDDDDD) for CK2, were recognized as substrates in T. evansi. While the enzymes present in the soluble fraction predominantly phosphorylated P1, P2 was preferentially labeled in the particulate fractions. These results demonstrated the existence of CK1-like and CK2-like activities primarily located in the parasite cytosolic and membranous fractions, respectively. Histone II-A and kemptide (LRRASVA) also behaved as suitable substrates, implying the existence of other Ser/Thr kinases in T. evansi. Cyclic AMP only increased the phosphorylation of histone II-A and kemptide in the cytosol, demonstrating the existence of soluble cAMP-dependent protein kinase-like activities in T. evansi. However, no endogenous substrates for this enzyme were identified in this fraction. Further evidences were obtained by using PKI (6-22), a reported inhibitor of the catalytic subunit of mammalian cAMP-dependent protein kinases, which specifically hindered the cAMP-dependent phosphorylation of histone II-A and kemptide in the parasite soluble fraction. Since the sum of the values obtained in the parasite cytosolic and particulate fractions were always higher than the values observed in the total T. evansi lysate, the kinase activities examined here appeared to be inhibited in the original extract.
Resumo:
Trypanosoma cruzi expresses mucin like glycoproteins encoded by a complex multigene family. In this work, we report the transcription in T. cruzi but not in T. rangeli of a mucin type gene automatically annotated by the T. cruzi genome project. The gene showed no nucleotide similarities with the previously reported T. cruzi mucin like genes, although the computational analysis of the deduced protein showed that it has the characteristic features of mucins: a signal peptide sequence, O-glycosylation sites, and glycosylphosphatidylinositol (GPI) anchor sequence. The presence in this gene of N- terminal and C- terminal coding sequences common to other annotated mucin like genes suggests the existence of a new mucin like gene family.
Resumo:
In vascular plants, the best-known feature of a differentiated endodermal cell is the "Casparian Strip" (CS). This structure refers to a highly localized cell wall impregnation in the transversal and anticlinal walls of the cell, which surrounds the cell like a belt/ring and is tightly coordinated with respect to neighboring cells. Analogous to tight junctions in animal epithelia, CS in plants act as a diffusion barrier that controls the movement of water and ions from soil into the stele. Since its first description by Robert Caspary in 1865 there have been many attempts to identify the chemical nature of the cell wall deposition in CS. Suberin, lignin, or both have been claimed to be the important components of CS in a series of different species. However, the exact chemical composition of CS has remained enigmatic. This controversy was due to the confusion and lack of knowledge regarding the precise measurement of three developmental stages of the endodermis. The CS represent only the primary stage of endodermal differentiation, which is followed by the deposition of suberin lamellae all around the cellular surface of endodermal cells (secondary developmental stage). Therefore, chemical analysis of whole roots, or even of isolated endodermal tissues, will always find both of the polymers present. It was crucial to clarify this point because this will guide our efforts to understand which cell wall biosynthetic component becomes localized in order to form the CS. The main aim of my work was to find out the major components of (early) CS, as well as their spatial and temporal development, physiological roles and relationship to barrier formation. Employing the knowledge and tools that have been accumulated over the last few years in the model plant Arabidopsis thaliana, various histological and chemical assays were used in this study. A particular feature of my work was to completely degrade, or inhibit formation of lignin and suberin biopolymers by biochemical, classical genetic and molecular approaches and to investigate its effect on CS formation and the establishment of a functional diffusion barrier. Strikingly, interference with monolignol biosynthesis abrogates CS formation and delays the formation of function diffusion barrier. In contrast, transgenic plants devoid of any detectable suberin still develop a functional CS. The combination of all these assays clearly demonstrates that the early CS polymer is made from monolignol (lignin monomers) and is composed of lignin. By contrast, suberin is formed much later as a secondary wall during development of endodermis. These early CS are functionally sufficient to block extracellular diffusion and suberin does not play important role in the establishment of early endodermal diffusion barrier. Moreover, suberin biosynthetic machinery is not present at the time of CS formation. Our study finally concludes the long-standing debate about the chemical nature of CS and opens the door to a new approach in lignin research, specifically for the identification of the components of the CS biosynthetic pathway that mediates the localized deposition of cell walls. I also made some efforts to understand the patterning and differentiation of endodermal passage cells in young roots. In the literature, passage cells are defined as a non- suberized xylem pole associated endodermal cells. Since these cells only contain the CS but not the suberin lamellae, it has been assumed that these cells may offer a continued low-resistance pathway for water and minerals into the stele. Thus far, no genes have been found to be expressed specifically in passage cells. In order to understand the patterning, differentiation, and physiological role of passage it would be crucial to identify some genes that are exclusively expressed in these cells. In order to identify such genes, I first generated fluorescent marker lines of stele-expressed transporters that have been reported to be expressed in the passage cells. My aim was to first highlight the passage cells in a non-specific way. In order to find passage cell specific genes I then adapted a two-component system based on previously published methods for gene expression profiling of individual cell types. This approach will allow us to target only the passage cells and then to study gene expression specifically in this cell type. Taken together, this preparatory work will provide an entry point to understand the formation and role of endodermal passage cells. - Chez les plantes vasculaires, la caractéristique la plus commune des cellules différentiées de l'endoderme est la présence de cadres de Caspary. Cette structure correspond à une imprégnation localisée des parties transversales et anticlinales de la paroi cellulaire. Cela donne naissance, autour de la cellule, à un anneau/cadre qui est coordonné par rapport aux cellules voisines. De manière analogue aux jonctions serrées des épithéliums chez les animaux, les cadres de Caspary agissent chez les plantes comme barrière de diffusion, contrôlant le mouvement de l'eau et des ions à travers la racine entre le sol et la stèle. Depuis leur première description par Robert Caspary en 1865, beaucoup de tentatives ont eu pour but de définir la nature chimique de ces cadres de Caspary. Après l'étude de différentes espèces végétales, à la fois la subérine, la lignine ou les deux ont été revendiquées comme étant des composants importants de ces cadres. Malgré tout, leur nature chimique exacte est restée longtemps énigmatique. Cette controverse provient de la confusion et du manque de connaissance concernant la détermination précise des trois stades de développement de l'endoderme. Les cadres de Caspary représentent uniquement le stade primaire de différentiation de l'endoderme. Celui-ci est suivi par le second stade de différentiation, la déposition de lamelles de subérine tout autour de la cellule endodermal. De ce fait, l'analyse chimique de racines entières ou de cellules d'endoderme isolées ne permet pas de séparer les stades de différentiation primaire et secondaire et aboutit donc à la présence des deux polymères. Il est également crucial de clarifier ce point dans le but de connaître quelle machinerie cellulaire localisée à la paroi cellulaire permet l'élaboration des cadres de Caspary. En utilisant les connaissances et les outils accumulés récemment grâce à la plante modèle Arabidopsis thaliana, divers techniques histologiques et chimiques ont été utilisées dans cette étude. Un point particulier de mon travail a été de dégrader ou d'inhiber complètement la formation de lignine ou de subérine en utilisant des approches de génétique classique ou moléculaire. Le but étant d'observer l'effet de l'absence d'un de ces deux polymères sur la formation des cadres de Caspary et l'établissement d'une barrière de diffusion fonctionnelle. De manière frappante, le fait d'interférer avec la voie de biosynthèse de monolignol (monomères de lignine) abolit la formation des cadres de Caspary et retarde l'élaboration d'une barrière de diffusion fonctionnelle. Par contre, des plantes transgéniques dépourvues d'une quantité détectable de subérine sont quant à elles toujours capables de développer des cadres de Caspary fonctionnels. Mises en commun, ces expériences démontrent que le polymère formant les cadres de Caspary dans la partie jeune de la racine est fait de monolignol, et que de ce fait il s'agit de lignine. La subérine, quant à elle, est formée bien plus tard durant le développement de l'endoderme, de plus il s'agit d'une modification de la paroi secondaire. Ces cadres de Caspary précoces faits de lignine suffisent donc à bloquer la diffusion extracellulaire, contrairement à la subérine. De plus, la machinerie de biosynthèse de la subérine n'est pas encore présente au moment de la formation des cadres de Caspary. Notre étude permet donc de mettre un terme au long débat concernant la nature chimique des cadres de Caspary. De plus, elle ouvre la porte à de nouvelles approches dans la recherche sur la lignine, plus particulièrement pour identifier des composants permettant la déposition localisée de ce polymère dans la paroi cellulaire. J'ai aussi fais des efforts pour mettre en évidence la formation ainsi que le rôle des cellules de passage dans les jeunes racines. Dans la littérature, les cellules de passage sont définies comme de la cellule endodermal faisant face aux pôles xylèmes et dont la paroi n'est pas subérisée. Du fait que ces cellules contiennent uniquement des cadres de Caspary et pas de lamelle de subérine, il a été supposé qu'elles ne devraient offrir que peu de résistance au passage de l'eau et des nutriments entre le sol et la stèle. Le rôle de ces cellules de passage est toujours loin d'être clair, de plus aucun gène s'exprimant spécifiquement dans ces cellules n'a été découvert à ce jour. De manière à identifier de tels gènes, j'ai tout d'abord généré des marqueurs fluorescents pour des transporteurs exprimés dans la stèle mais dont l'expression avait également été signalée dans l'endoderme, uniquement dans les cellules de passage. J'ai ensuite développé un système à deux composants basé sur des méthodes déjà publiées, visant principalement à étudier le profil d'expression génique dans un type cellulaire donné. En recoupant les gènes exprimés spécifiquement dans l'endoderme à ceux exprimés dans la stèle et les cellules de passage, il nous sera possible d'identifier le transriptome spécifique de ces cellules. Pris dans leur ensemble, ces résultats devraient donner un bon point d'entrée dans la définition et la compréhension des cellules de passage.
Resumo:
Based on general concepts relating to risk perception, the authors summarize in this article today's knowledge of smoking risk perception. A pluridisciplinary approach (general internal medicine, public health and anthropology) allows an improved understanding of its complexity, its utility in every day clinical practice and of the questions still pending around its use and evaluation in research projects.
Resumo:
The symptomatic phases of many inflammatory diseases are characterized by migration of large numbers of neutrophils (PMN) across a polarized epithelium and accumulation within a lumen. For example, acute PMN influx is common in diseases of the gastrointestinal system (ulcerative colitis, Crohn's disease, bacterial enterocolitis, gastritis), hepatobiliary system (cholangitis, acute cholecystitis), respiratory tract (bronchial pneumonia, bronchitis, cystic fibrosis, bronchiectasis), and urinary tract (pyelonephritis, cystitis). Despite these observations, the molecular basis of leukocyte interactions with epithelial cells is incompletely understood. In vitro models of PMN transepithelial migration typically use N-formylated bacterial peptides such as fMLP in isolation to drive human PMNs across epithelial monolayers. However, other microbial products such as lipopolysaccharide (LPS) are major constituents of the intestinal lumen and have potent effects on the immune system. In the absence of LPS, we have shown that transepithelial migration requires sequential adhesive interactions between the PMN beta2 integrin CD11b/CD18 and JAM protein family members. Other epithelial ligands appear to be abundantly represented as fucosylated proteoglycans. Further studies indicate that the rate of PMN migration across mucosal surfaces can be regulated by the ubiquitously expressed transmembrane protein CD47 and microbial-derived factors, although many of the details remain unclear. Current data suggests that Toll-like receptors (TLR), which recognize specific pathogen-associated molecular patterns (PAMPs), are differentially expressed on both leukocytes and mucosal epithelial cells while serving to modulate leukocyte-epithelial interactions. Exposure of epithelial TLRs to microbial ligands has been shown to result in transcriptional upregulation of inflammatory mediators whereas ligation of leukocyte TLRs modulate specific antimicrobial responses. A better understanding of these events will hopefully provide new insights into the mechanisms of epithelial responses to microorganisms and ideas for therapies aimed at inhibiting the deleterious consequences of mucosal inflammation.
Resumo:
BACKGROUND: Questions remain about how brief motivational interventions (BMIs) for unhealthy alcohol use work, and addressing these questions may be important for improving their efficacy. Therefore, we assessed the effects of various characteristics of BMIs on drinking outcomes across 3 randomized controlled trials (RCTs). METHODS: Audio recordings of 314 BMIs were coded. We used the global rating scales of the Motivational Interviewing Skills Code (MISC) 2.1: counselor's acceptance, empathy, and motivational interviewing (MI) spirit, and patient's self-exploration were rated. MI proficiency was defined as counselor's rating scale scores ≥5. We also used the structure, confrontation, and advice subscale scores of the Therapy Process Rating Scale and the Working Alliance Inventory. We examined these process characteristics in interventions across 1 U.S. RCT of middle-aged medical inpatients with unhealthy alcohol use (n = 124) and 2 Swiss RCTs of young men with binge drinking in a nonclinical setting: Swiss-one (n = 62) and Swiss-two (n = 128). We assessed the associations between these characteristics and drinks/d reported by participants 3 to 6 months after study entry. RESULTS: In all 3 RCTs, mean MISC counselor's rating scales scores were consistent with MI proficiency. In overdispersed Poisson regression models, most BMI characteristics were not significantly associated with drinks/d in follow-up. In the U.S. RCT, confrontation and self-exploration were associated with more drinking. Giving advice was significantly associated with less drinking in the Swiss-one RCT. Contrary to expectations, MI spirit was not consistently associated with drinking across studies. CONCLUSIONS: Across different populations and settings, intervention characteristics viewed as central to efficacious BMIs were neither robust nor consistent predictors of drinking outcome. Although there may be alternative reasons why the level of MI processes was not predictive of outcomes in these studies (limited variability in scores), efforts to understand what makes BMIs efficacious may require attention to factors beyond intervention process characteristics typically examined.
Resumo:
Type I interferon (IFN-α/β) induction upon viral infection contributes to the early antiviral host defense and ensures survival until the onset of adaptive immunity. Many viral infections lead to an acute, transient IFN expression which peaks a few hours after infection and reverts to initial levels after 24 to 36 h. Robust IFN expression often is conferred by specialized plasmacytoid dendritic cells (pDC) and may depend on positive-feedback amplification via the type I IFN receptor (IFNAR). Here, we show that mice infected with Thogoto virus (THOV), which is an influenza virus-like orthomyxovirus transmitted by ticks, mounted sustained IFN responses that persisted up to 72 h after infection. For this purpose, we used a variant of THOV lacking its IFN-antagonistic protein ML, an elongated version of the matrix (M) protein [THOV(ΔML)]. Of note, large amounts of type I IFN were also found in the serum of mice lacking the IFNAR. Early IFN-α expression seemed to depend on Toll-like receptor (TLR) signaling, whereas prolonged IFN-α responses strictly depended on RIG-I-like helicase (RLH) signaling. Unexpectedly, THOV(ΔML)-infected bone marrow-derived pDC (BM-pDC) produced only moderate IFN levels, whereas myeloid DC (BM-mDC) showed massive IFN induction that was IPS-1-dependent, suggesting that BM-mDC are involved in the massive, sustained IFN production in THOV(ΔML)-infected animals. Thus, our data are compatible with the model that THOV(ΔML) infection is sensed in the acute phase via TLR and RLH systems, whereas at later time points only RLH signaling is responsible for the induction of sustained IFN responses.
Resumo:
We have been able to label the excretory system of cercariae and all forms of schistosomula, immature and adult worms with the highly fluorescent dye resorufin. We have shown that the accumulation of the resorufin into the excretory tubules and collecting ducts of the male adult worm depends on the presence of extracellular calcium and phosphate ions. In the adult male worms, praziquantel (PZQ) prevents this accumulation in RPMI medium and disperses resorufin from tubules which have been prelabelled. Female worms and all other developmental stages are much less affected either by the presence of calcium and phosphate ions, or the disruption caused by PZQ. The male can inhibit the excretory system in paired female. Fluorescent PZQ localises in the posterior gut (intestine) region of the male adult worm, but not in the excretory system, except for the anionic carboxy fluorescein derivative of PZQ, which may be excreted by this route. All stages of the parasite can recover from damage by PZQ treatment in vitro. The excretory system is highly sensitive to damage to the surface membrane and may be involved in vesicle movement and damage repair processes. In vivo the adult parasite does not recover from PZQ treatment, but what is inhibiting recovery is unknown, but likely to be related to immune effector molecules.
Resumo:
Upon detection of viral RNA, the helicases RIG-I and/or MDA5 trigger, via their adaptor Cardif (also known as IPS-1, MAVS, or VISA), the activation of the transcription factors NF-kappaB and IRF3, which collaborate to induce an antiviral type I interferon (IFN) response. FADD and RIP1, known as mediators of death-receptor signaling, are implicated in this antiviral pathway; however, the link between death-receptor and antiviral signaling is not known. Here we showed that TRADD, a crucial adaptor of tumor necrosis factor receptor (TNFRI), was important in RIG-like helicase (RLH)-mediated signal transduction. TRADD is recruited to Cardif and orchestrated complex formation with the E3 ubiquitin ligase TRAF3 and TANK and with FADD and RIP1, leading to the activation of IRF3 and NF-kappaB. Loss of TRADD prevented Cardif-dependent activation of IFN-beta, reduced the production of IFN-beta in response to RNA viruses, and enhanced vesicular stomatitis virus replication. Thus, TRADD is not only an essential component of proinflammatory TNFRI signaling, but is also required for RLH-Cardif-dependent antiviral immune responses
Resumo:
Pancreatic β-cells play central roles in blood glucose homeostasis. Beside insulin, these cells release neurotransmitters and other signaling molecules stored in synaptic-like microvesicles (SLMVs). We monitored SLMV exocytosis by transfecting a synaptophysin-pHluorin construct and by visualizing the cells by Total Internal Reflection Fluorescence (TIRF) microscopy. SLMV fusion was elicited by 20 mM glucose and by depolarizing K(+) concentrations with kinetics comparable to insulin secretion. SLMV exocytosis was prevented by Tetanus and Botulinum-C neurotoxins indicating that the fusion machinery of these organelles includes VAMP-2/-3 and Syntaxin-1, respectively. Sequential visualization of SLMVs by TIRF and epifluorescence microscopy showed that after fusion the vesicle components are rapidly internalized and the organelles re-acidified. Analysis of single fusion episodes revealed the existence of two categories of events. While under basal conditions transient fusion events prevailed, long-lasting episodes were more frequent upon secretagogue exposure. Our observations unveiled similarities between the mechanism of exocytosis of insulin granules and SLMVs. Thus, diabetic conditions characterized by defective insulin secretion are most probably associated also with inappropriate release of molecules stored in SLMVs. The assessment of the contribution of SLMV exocytosis to the manifestation of the disease will be facilitated by the use of the imaging approach described in this study.
Resumo:
Purpose/Objective: The family of histone deacetylases comprises 18 members in mammals, among which seven sirtuins (SIRT1-7). Sirtuins are NADP-dependent enzymes that have been involved in the control of cell metabolism, proliferation and survival. The expression pattern of sirtuins and their influence on host response to microbial infection remain largely unknown. The aim of the study was to analyze the expression of SIRT1-7 and to address the effects of SIRT1/2 inhibition on innate immune responses in vitro and in vivo.. Materials and methods: in vitro: Bone marrow (BM), BM-derived macrophages (BMDMs) and dendritic cells (BMDCs) and RAW 264.7 and J774.1 macrophage cell lines were stimulated for 0, 2, 6 and 18 h with LPS, Pam3CSK4 and CpG ODN. SIRT1-7 mRNA was quantified by real time-PCR. TNF was measured by ELISA. In vivo: BALB/c mice were challenged with LPS (350 lg i.p.) with or without a SIRT1/2 inhibitor. Blood and organs were collected after 0, 1, 4, 8 and 24 h to quantify SIRT1-7 and TNF. Mortality was assessed daily. Results: Bone marrow, macrophages and DCs express, in order of abundance, SIRT2 > > SIRT1, SIRT3 and SIRT6 > SIRT4, SIRT5 and SIRT7. Microbial products decrease the expression of all sirtuins except SIRT6 in a time dependent manner in BMDMs (0_24 h). SIRT2 is the most expressed sirtuin also in the liver, kidney (together with SIRT3) and spleen. Upon LPS challenge, SIRT1, SIRT3, SIRT4 and SIRT7 mRNA levels decrease in the liver (from 4 h to 24 h), whereas SIRT1-7 mRNA levels decrease within 1 h in both kidney and spleen. Pharmacological inhibition of SIRT1/2 decreases TNF production by macrophages stimulated with LPS, Pam3CSK4 and CpG ODN (n = 6; P < 0.001). In agreement, prophylactic treatment with a SIRT1/2 inhibitor decreases TNF production (n = 8; P = 0.04) and increases survival (n = 13, P = 0.03) of mice challenged with LPS. Conclusions: Sirtuins are expressed in innate immune cells. Inhibition of SIRT1/2 activity decreases cytokine production by macrophages and protects from endotoxemia, suggesting that sirtuin inhibitors may represent novel adjunctive therapy for treating inflammatory disorders such as sepsis.
Resumo:
The aim of this study was to test the possible implication of toll-like receptor 2 (TLR2) and TLR4 gene polymorphisms in determining the susceptibility to Chagas' disease. Genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism in 475 individuals from Colombia, 143 seropositive with chagasic cardiomyopathy, 132 seropositive asymptomatic and 200 seronegative. The TLR2 arginine to glutamine substitution at residue 753(Arg753Gln) polymorphism was absent in the groups analyzed. The TLR4 Asp299Gly and Thr399Ile polymorphisms are in linkage disequilibrium and we observed a very low frequency of these polymorphisms in our study population (2.6% and 1.8% respectively). The overall TLR2 and TLR4 alleles and genotype distribution in seronegative and seropositive were not significantly different. We compared the frequencies between asymptomatic patients and those with chagasic cardiomyopathy and we did not observe any significant differences in the distribution of alleles or genotypes. In summary, this study corroborates the low frequency of TLR2 and TLR4 polymorphisms observed in other populations and suggest that these do not play an important role in Chagas' disease. The validation of these findings in independent cohorts is needed to firmly establish a role for TLR2 and TLR4 variants in Chagas' disease.