949 resultados para LASER-PLASMA INTERACTIONS
Resumo:
Plasma ionization in the low-pressure operation regime ( $«$ 5 Pa) of RF capacitively coupled plasmas (CCPs) is governed by a complex interplay of various mechanisms, such as field reversal, sheath expansion, and wave–particle interactions. In a previous paper, it was shown that experimental observations in a hydrogen CCP operated at 13.56 MHz are qualitatively well described in a 1-D symmetrical particle-in-cell (PIC) simulation. In this paper, a spherical asymmetrical PIC simulation that is closer to the conditions of the highly asymmetrical experimental device is used to simulate a low-pressure neon CCP operated at 2 MHz. The results show a similar behavior, with pronounced ionization through field reversal, sheath expansion, and wave–particle interactions, and can be exploited for more accurate quantitative comparisons with experimental observations.
Resumo:
This paper reviews recent experimental activity in the area of optimization, control, and application of laser accelerated proton beams, carried out at the Rutherford Appleton Laboratory and the Laboratoire pour l’Utilisation des Lasers Intenses 100 TW facility in France. In particular, experiments have investigated the role of the scale length at the rear of the plasma in reducing target-normal-sheath-acceleration acceleration efficiency. Results match with recent theoretical predictions and provide information in view of the feasibility of proton fast-ignition applications. Experiments aiming to control the divergence of the proton beams have investigated the use of a laser-triggered microlens, which employs laser-driven transient electric fields in cylindrical geometry, enabling to focus the emitted
protons and select monochromatic beam lets out of the broad spectrum beam. This approach could be advantageous in view
of a variety of applications. The use of laser-driven protons as a particle probe for transient field detection has been developed and
applied to a number of experimental conditions. Recent work in this area has focused on the detection of large-scale self-generated magnetic fields in laser-produced plasmas and the investigation of fields associated to the propagation of relativistic electron both on the surface and in the bulk of targets irradiated by high-power laser pulses.
Resumo:
Despite enormous potential for technological applications, fundamentals of stable non-equilibrium micro-plasmas at ambient pressure are still only partly understood. Micro-plasma jets are one sub-group of these plasma sources. For an understanding it is particularly important to analyse transport phenomena of energy and particles within and between the core and effluent of the discharge. The complexity of the problem requires the combination and correlation of various highly sophisticated diagnostics yielding different information with an extremely high temporal and spatial resolution. A specially designed rf microscale atmospheric pressure plasma jet (µ-APPJ) provides excellent access for optical diagnostics to the discharge volume and the effluent region. This allows detailed investigations of the discharge dynamics and energy transport mechanisms from the discharge to the effluent. Here we present examples for diagnostics applicable to different regions and combine the results. The diagnostics applied are optical emission spectroscopy (OES) in the visible and ultraviolet and two-photon absorption laser-induced fluorescence spectroscopy. By the latter spatially resolved absolutely calibrated density maps of atomic oxygen have been determined for the effluent. OES yields an insight into energy transport mechanisms from the core into the effluent. The first results of spatially and phase-resolved OES measurements of the discharge dynamics of the core are presented.
Resumo:
We have investigated the angular variation in elastic x-ray scattering from a dense, laser-shock-compressed aluminum foil. A comparison of the experiment with simulations using an embedded atom potential in a molecular dynamics simulation shows a significantly better agreement than simulations based on an unscreened one-component plasma model. These data illustrate, experimentally, the importance of screening for the dense plasma static structure factor.
Resumo:
The potential of laser-induced fluorescence spectroscopy of atoms is reviewed with emphasis on the determination of absolute densities. Examples of experiments with single-photon and two-photon excitation are presented. Calibration methods applicable with the different schemes are discussed. A new method is presented that has the potential to allow absolute measurement in plasmas of elevated pressure where collisional depletion of the excited state is present.
Resumo:
The coplanar microscale atmospheric pressure plasma jet (µ-APPJ) is a capacitively coupled radio frequency discharge (13.56 MHz, ~15W rf power) designed for optimized optical diagnostic access. It is operated in a homogeneous glow mode with a noble gas flow (1.4 slm He) containing a small admixture of molecular oxygen (~0.5%). Ground state atomic oxygen densities in the effluent up to 2 × 1014 cm-3 are measured by two-photon absorption laser-induced fluorescence spectroscopy (TALIF) providing space resolved density maps. The quantitative calibration of the TALIF setup is performed by comparative measurements with xenon. A maximum of the atomic oxygen density is observed for 0.6% molecular oxygen admixture. Furthermore, an increase in the rf power up to about 15W (depending on gas flow and mixture) leads to an increase in the effluent’s atomic oxygen density, then reaching a constant level for higher powers.
Resumo:
The micro atmospheric pressure plasma jet is an rf driven (13.56 MHz, ~20 W) capacitively coupled discharge producing a homogeneous plasma at ambient pressure when fed with a gas flow of helium (1.4 slm) containing small admixtures of oxygen (~0.5%). The design provides excellent optical access to the plasma core. Ground state atomic oxygen densities up to 3x1016 cm-3 are measured spatially resolved in the discharge core by absolutely calibrated two-photon absorption laser-induced fluorescence spectroscopy. The atomic oxygen density builds up over the first 8 mm of the discharge channel before saturating at a maximum level. The absolute value increases linearly with applied power.
Resumo:
The planar 13.56MHz RF-excited low temperature atmospheric pressure plasma jet (APPJ) investigated in this study is operated with helium feed gas and a small molecular oxygen admixture. The effluent leaving the discharge through the jet’s nozzle contains very few charged particles and a high reactive oxygen species’ density. As its main reactive radical, essential for numerous applications, the ground state atomic oxygen density in the APPJ’s effluent is measured spatially resolved with two-photon absorption laser induced fluorescence spectroscopy. The atomic oxygen density at the nozzle reaches a value of ~1016 cm-3. Even at several centimetres distance still 1% of this initial atomic oxygen density can be detected. Optical emission spectroscopy (OES) reveals the presence of short living excited oxygen atoms up to 10 cm distance from the jet’s nozzle. The measured high ground state atomic oxygen density and the unaccounted for presence of excited atomic oxygen require further investigations on a possible energy transfer from the APPJ’s discharge region into the effluent: energetic vacuum ultraviolet radiation, measured by OES down to 110 nm, reaches far into the effluent where it is presumed to be responsible for the generation of atomic oxygen.
Resumo:
Measurements of collisional de-excitation (quenching) coefficients required for the interpretation of emission and fluorescence spectroscopic measurements are reported. Particular attention is turned on argon transitions which are of interest for actinometric determinations of atomic ground state populations and on fluorescence lines originating from excited atoms and noble gases in connection with two-photon excitation (TALIF) of atomic radicals. A novel method is described which allows to infer quenching coefficients for collisions with molecular hydrogen of noble gas states in the energy range up to 24 eV. The excitation is performed in these experiments by collisions of energetic electrons in the sheath of an RF excited hydrogen plasma during the field reversal phase which lasts about 10 ns. We describe in addition a calibration method - including quenching effects - for the determination by TALIF of absolute atomic radical densities of hydrogen, nitrogen and oxygen using two-photon resonances in noble gases close by the resonances of the species mentioned. The paper closes with first ideas on a novel technique to bypass quenching effects in TALIF by introducing an additional, controllable loss by photoionization that will allow quenching-free determination of absolute atomic densities with prevalent nanosecond laser systems in situations where collisional de-excitation dominates over spontaneous emission.
Resumo:
The complex dynamics of radio-frequency driven atmospheric pressure plasma jets is investigated using various optical diagnostic techniques and numerical simulations. Absolute number densities of ground state atomic oxygen radicals in the plasma effluent are measured by two-photon absorption laser induced fluorescence spectroscopy (TALIF). Spatial profiles are compared with (vacuum) ultra-violet radiation from excited states of atomic oxygen and molecular oxygen, respectively. The excitation and ionization dynamics in the plasma core are dominated by electron impact and observed by space and phase resolved optical emission spectroscopy (PROES). The electron dynamics is governed through the motion of the plasma boundary sheaths in front of the electrodes as illustrated in numerical simulations using a hybrid code based on fluid equations and kinetic treatment of electrons.
Resumo:
We have measured the densities of 1s5 and 1s3 argon metastables as a function of the abundance of molecular oxygen in an inductively coupled plasma (ICP) in mixtures of Ar and O2. Laser absorption spectroscopy was used to determine the densities of the metastables. It was found that even small abundances of oxygen lead to large increases in metastable density, mostly due to the reduction in the electron number density, since electron-induced quenching determines the metastable density. At abundances higher than 7% to 15% for powers between 50 and 150W, quenching by oxygen molecules begins to dominate and the metastable density drops again.