805 resultados para Knowledge Discovery in Databases


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work analyzes the use of linear discriminant models, multi-layer perceptron neural networks and wavelet networks for corporate financial distress prediction. Although simple and easy to interpret, linear models require statistical assumptions that may be unrealistic. Neural networks are able to discriminate patterns that are not linearly separable, but the large number of parameters involved in a neural model often causes generalization problems. Wavelet networks are classification models that implement nonlinear discriminant surfaces as the superposition of dilated and translated versions of a single "mother wavelet" function. In this paper, an algorithm is proposed to select dilation and translation parameters that yield a wavelet network classifier with good parsimony characteristics. The models are compared in a case study involving failed and continuing British firms in the period 1997-2000. Problems associated with over-parameterized neural networks are illustrated and the Optimal Brain Damage pruning technique is employed to obtain a parsimonious neural model. The results, supported by a re-sampling study, show that both neural and wavelet networks may be a valid alternative to classical linear discriminant models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with the selection of inputs for classification models based on ratios of measured quantities. For this purpose, all possible ratios are built from the quantities involved and variable selection techniques are used to choose a convenient subset of ratios. In this context, two selection techniques are proposed: one based on a pre-selection procedure and another based on a genetic algorithm. In an example involving the financial distress prediction of companies, the models obtained from ratios selected by the proposed techniques compare favorably to a model using ratios usually found in the financial distress literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a world of almost permanent and rapidly increasing electronic data availability, techniques of filtering, compressing, and interpreting this data to transform it into valuable and easily comprehensible information is of utmost importance. One key topic in this area is the capability to deduce future system behavior from a given data input. This book brings together for the first time the complete theory of data-based neurofuzzy modelling and the linguistic attributes of fuzzy logic in a single cohesive mathematical framework. After introducing the basic theory of data-based modelling, new concepts including extended additive and multiplicative submodels are developed and their extensions to state estimation and data fusion are derived. All these algorithms are illustrated with benchmark and real-life examples to demonstrate their efficiency. Chris Harris and his group have carried out pioneering work which has tied together the fields of neural networks and linguistic rule-based algortihms. This book is aimed at researchers and scientists in time series modeling, empirical data modeling, knowledge discovery, data mining, and data fusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soon after its discovery in the 1950s, NMR had become an indispensable tool fr chemists. In the 1970s and 1980s, the power of the technique was extended from one dimension to two and even three dimensions, opening up exciting applkications in both chemistry and biochemistry. the success of one dimensional. high-resolution NMR stems from the unique insights that it can provide about molecular structure. The chemical shift of a nucleus gives invaluable information abut the chemical environment in which that nucleus is located, Coupling interactions between hydorgen nuclei, as revealed by characteristic splitting patterns inthe 1H-NMR spectrum, provide informaton about the loaction of one group of hydorgen atoms relative to others inthe molecule. And the nuclearf Overhauser effect (nOe) can shed light on molecular stereochemistry.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent, dramatic spatial development trends have contributed to the consolidation of a unique territorial governance landscape in the Baltic States. The paper examines the transformation of this evolving institutional landscape for planning practice and knowledge, which has been marked by the disintegration of Soviet institutions and networks, the transition to a market-based economy and the process of accession to the EU. It explores the evolution of territorial knowledge channels in the Baltic States, and the extent and nature of the engagement of actors' communities with the main knowledge arenas and resources of European spatial planning (ESP). The paper concludes that recent shifts in the evolution of these channels suggest the engagement of ESP has concentrated among epistemic communities at State and trans-national levels of territorial governance. The limited policy coordination across a broader spectrum of diverse actors is compounded by institutionally weak and fragmented professional communities of practice, fragmented government structures and marginalized advocacy coalitions.