934 resultados para KIDNEY DAMAGE
Resumo:
Background: BK virus associated nephropathy occurs in 1-10% of kidney transplant recipients and may be a cause of graft loss. This infection is difficult to manage because of the absence of specific therapy. Cidofovir, a DNA polymerase inhibitor approved for the treatment of CMV retinitis, has shown in vitro activity against BK virus and some clinical efficacy when used at low-dose in uncontrolled series. Objective: To assess the efficacy of low-dose Cidofovir in the treatment of BK virus associated nephropathy. Method: Two adult kidney transplant recipients with biopsy-proven BK nephropathy and persistent high viremia (>10,000 copies/ml) despite 3-month reduction of immunosuppressive therapy were treated by Cidofovir 0.5 mg/kg fortnightly for a total of 16 weeks (8 doses). Clinical response was assessed by following BK viremia. Results: No decrease in BK viremia was observed at any point during cidofovir therapy (see figure). Creatinine clearance remained stable during therapy and no side-effects of Cidofovir were observed. Conclusions: Low-dose Cidofovir therapy was not associated with a clearance or with a significant decrease of BK viremia. This pilot study does not confirm previous reports suggesting clinical efficacy of Cidofovir for BK virus associated nephropathy.
Resumo:
In this work, a previously-developed, statistical-based, damage-detection approach was validated for its ability to autonomously detect damage in bridges. The damage-detection approach uses statistical differences in the actual and predicted behavior of the bridge caused under a subset of ambient trucks. The predicted behavior is derived from a statistics-based model trained with field data from the undamaged bridge (not a finite element model). The differences between actual and predicted responses, called residuals, are then used to construct control charts, which compare undamaged and damaged structure data. Validation of the damage-detection approach was achieved by using sacrificial specimens that were mounted to the bridge and exposed to ambient traffic loads and which simulated actual damage-sensitive locations. Different damage types and levels were introduced to the sacrificial specimens to study the sensitivity and applicability. The damage-detection algorithm was able to identify damage, but it also had a high false-positive rate. An evaluation of the sub-components of the damage-detection methodology and methods was completed for the purpose of improving the approach. Several of the underlying assumptions within the algorithm were being violated, which was the source of the false-positives. Furthermore, the lack of an automatic evaluation process was thought to potentially be an impediment to widespread use. Recommendations for the improvement of the methodology were developed and preliminarily evaluated. These recommendations are believed to improve the efficacy of the damage-detection approach.
Resumo:
The 2011 Missouri River flooding caused significant damage to many geo-infrastructure systems including levees, bridge abutments/foundations, paved and unpaved roadways, culverts, and embankment slopes in western Iowa. The flooding resulted in closures of several interchanges along Interstate 29 and of more than 100 miles of secondary roads in western Iowa, causing severe inconvenience to residents and losses to local businesses. The main goals of this research project were to assist county and city engineers by deploying and using advanced technologies to rapidly assess the damage to geo-infrastructure and develop effective repair and mitigation strategies and solutions for use during future flood events in Iowa. The research team visited selected sites in western Iowa to conduct field reconnaissance, in situ testing on bridge abutment backfills that were affected by floods, flooded and non-flooded secondary roadways, and culverts. In situ testing was conducted shortly after the flood waters receded, and several months after flooding to evaluate recovery and performance. Tests included falling weight deflectometer, dynamic cone penetrometer, three-dimensional (3D) laser scanning, ground penetrating radar, and hand auger soil sampling. Field results indicated significant differences in roadway support characteristics between flooded and non-flooded areas. Support characteristics in some flooded areas recovered over time, while others did not. Voids were detected in culvert and bridge abutment backfill materials shortly after flooding and several months after flooding. A catalog of field assessment techniques and 20 potential repair/mitigation solutions are provided in this report. A flow chart relating the damages observed, assessment techniques, and potential repair/mitigation solutions is provided. These options are discussed for paved/unpaved roads, culverts, and bridge abutments, and are applicable for both primary and secondary roadways.
Resumo:
This work is divided into three volumes: Volume I: Strain-Based Damage Detection; Volume II: Acceleration-Based Damage Detection; Volume III: Wireless Bridge Monitoring Hardware. Volume I: In this work, a previously-developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. The statistical damage-detection tool, control-chart-based damage-detection methodologies, were further investigated and advanced. For the validation of the damage-detection approaches, strain data were obtained from a sacrificial specimen attached to the previously-utilized US 30 Bridge over the South Skunk River (in Ames, Iowa), which had simulated damage,. To provide for an enhanced ability to detect changes in the behavior of the structural system, various control chart rules were evaluated. False indications and true indications were studied to compare the damage detection ability in regard to each methodology and each control chart rule. An autonomous software program called Bridge Engineering Center Assessment Software (BECAS) was developed to control all aspects of the damage detection processes. BECAS requires no user intervention after initial configuration and training. Volume II: In this work, a previously developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. The objective of this part of the project was to validate/integrate a vibration-based damage-detection algorithm with the strain-based methodology formulated by the Iowa State University Bridge Engineering Center. This report volume (Volume II) presents the use of vibration-based damage-detection approaches as local methods to quantify damage at critical areas in structures. Acceleration data were collected and analyzed to evaluate the relationships between sensors and with changes in environmental conditions. A sacrificial specimen was investigated to verify the damage-detection capabilities and this volume presents a transmissibility concept and damage-detection algorithm that show potential to sense local changes in the dynamic stiffness between points across a joint of a real structure. The validation and integration of the vibration-based and strain-based damage-detection methodologies will add significant value to Iowa’s current and future bridge maintenance, planning, and management Volume III: In this work, a previously developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. This report volume (Volume III) summarizes the energy harvesting techniques and prototype development for a bridge monitoring system that uses wireless sensors. The wireless sensor nodes are used to collect strain measurements at critical locations on a bridge. The bridge monitoring hardware system consists of a base station and multiple self-powered wireless sensor nodes. The base station is responsible for the synchronization of data sampling on all nodes and data aggregation. Each wireless sensor node include a sensing element, a processing and wireless communication module, and an energy harvesting module. The hardware prototype for a wireless bridge monitoring system was developed and tested on the US 30 Bridge over the South Skunk River in Ames, Iowa. The functions and performance of the developed system, including strain data, energy harvesting capacity, and wireless transmission quality, were studied and are covered in this volume.
Resumo:
Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD.
Resumo:
We previously showed that exposure of 3D organotypic rat brain cell cultures to 1mM 2-methylcitrate (2-MCA) or 3-hydroxyglutarate (3- OHGA) every 12h over three days (DIV11-DIV14) results in ammonium accumulation and cell death. The aim of this study was to define the time course (every 24h) of the observed effects. Ammonium in culture medium already increased at DIV12 staying stable on the following days under 3-OHGA exposure, while it increased consecutively up to much higher levels under 2-MCA exposure. Lactate increase and glucose decrease were observed from DIV13 and DIV14, respectively. We conclude that ammonium accumulation precedes alterations of energy metabolism. As observed by immunohistochemistry glial cells were the predominant dying cells. Immunoblotting and immunohistochemistry with cell death specific markers (caspase-3, alpha-fodrin, LC3) showed that 2-MCA exposure significantly increased apoptosis on DIV14, but did not alter autophagy or necrosis. In contrast, 3-OHGA exposure substantially increased necrosis already from DIV13, while no change was observed for apoptosis and autophagy. In conclusion, ammonium accumulation, secondary disturbance of energy metabolism and glial cell death are involved in the neuropathogenesis ofmethylmalonic aciduria and glutaric aciduria type I. Interestingly, brain cells are dying by necrosis under 3-OHGA exposure and by apoptosis under 2-MCA exposure.
Resumo:
Background: Optimal valganciclovir (VGC) dosage and duration for cytomegalovirus (CMV) prophylaxis in kidney transplant recipients remains controversial. This study aimed to determine GCV blood levels and efficacy/safety observed under low-dose oral VGC in kidney transplant recipients. Secondly, to quantify the variability of GCV blood levels, and its potential clinical impact. Methods: In this prospective study, each patient at risk for CMV undergoing kidney transplantation received low-dose VGC (450 mg qd) prophylaxis for 3 months, unless GFR was below 40 mL/min, in which case the dose was adapted to 450 mg every other day. GCV levels, at trough (Ctrough) and at peak (C3h) were measured monthly and CMV viremia was assessed during and after prophylaxis using real time quantitative Polymerase Chain Reaction. Adverse effects were recorded on each GCV sampling. Patients were followed up to one year after transplantation. Results: 38 kidney recipients (19 D+/R+, 11 D+/R-, 8 D-/R+) received 3-month VGC prophylaxis. Most patients (mean GFR of 59 mL/min) received 450 mg qd but the dose was reduced to 450 mg every other day in 6 patients with mean GFR of 22 mL/min. Average GCV C3h and Ctrough (regressed at 24h or 48h) were 3.9 mg/L (CV 33%, range: 1.3-8.2) and 0.4 mg/L (CV 111%, range 0.1-3.3). Population pharmacokinetic analysis showed a fair dispersion of the parameters mainly influenced by renal function. Despite this variability, patients remained aviremic during VGC prophylaxis. Neutropenia and thrombocytopenia (grade 2-4) were reported in 4% and 3% of patients respectively. During follow-up, asymptomatic CMV viremia was reported in 25% patients. One year after transplantation, 12% patients (all D+/R-) had developed a CMV disease, which was treated with a therapeutic 6-week course of oral VGC. Conclusion: Average GCV blood levels after oral administration of low-dose VGC in kidney transplant recipients were comparable to those previously reported with oral GCV prophylaxis, efficacious and well tolerated. Thus, a 3-month course of low-dose VGC is appropriate for the renal function of most kidney transplant recipients.
Resumo:
The membrane organization of the alpha-subunit of purified (Na+ + K+)-ATPase ((Na+ + K+)-dependent adenosine triphosphate phosphorylase, EC 3.6.1.3) and of the microsomal enzyme of the kidney of the toad Bufo marinus was compared by using controlled trypsinolysis. With both enzyme preparations, digestions performed in the presence of Na+ yielded a 73 kDa fragment and in the presence of K+ a 56 kDa, a 40 kDa and small amounts of a 83 kDa fragment from the 96 kDa alpha-subunit. In contrast to mammalian preparations (Jørgensen, P.L. (1975) Biochim. Biophys. Acta 401, 399-415), trypsinolysis of the purified amphibian enzyme led to a biphasic loss of (Na+ + K+)-ATPase activity in the presence of both Na+ and K+. These data could be correlated with an early rapid cleavage of 3 kDa from the alpha-subunit in both ionic conditions and a slower degradation of the remaining 93 kDa polypeptide. On the other hand, in the microsomal enzyme, a 3 kDa shift of the alpha-subunit could only be produced in the presence of Na+. Our data indicate that (1) purification of the amphibian enzyme with detergent does not influence the overall topology of the alpha-subunit but produces a distinct structural alteration of its N-terminus and (2) the amphibian kidney enzyme responds to cations with similar conformational transitions as the mammalian kidney enzyme. In addition, anti alpha-serum used on digested enzyme samples revealed on immunoblots that the 40 kDa fragment was better recognized than the 56 kDa fragment. It is concluded that the NH2-terminal of the alpha-subunit contains more antigenic sites than the COOH-terminal domain in agreement with the results of Farley et al. (Farley, R.A., Ochoa, G.T. and Kudrow, A. (1986) Am. J. Physiol. 250, C896-C906).
Resumo:
The objective of this work was to develop a low-cost portable damage detection tool to assess and predict damage areas in highway bridges. The proposed tool was based on standard vibration-based damage identification (VBDI) techniques but was extended to a new approach based on operational traffic load. The methodology was tested using numerical simulations, laboratory experiments, and field testing.
Resumo:
The detection of BK polyomavirus (BK virus, BKV) in kidney tissue is hampered by nonspecificity of antibodies suited to immunohistochemistry, and nonspecific background with in situ hybridization. The biotin-labeled DNA probe that is commercially available (Enzo Life Sciences, Inc.) shows good signal, but the intrinsic background in kidney tissue is high. We determined that the intrinsic background is due to endogenous biotin or biotin-binding activity in the renal tubular epithelium. Neither antibody blocking procedures nor an avidin/biotin block were entirely satisfactory for eliminating this background staining. We developed a digoxigenin-labeled DNA probe, and protocol, for detecting BK virus in formalin-fixed, paraffin embedded, kidney tissue obtained at autopsy. The hybridization signal is strong and there is no perceptible background staining. Eleven negative control kidneys all failed to hybridize. Conditions for low stringency hybridization may be employed, detecting both the related JC polyomavirus and BKV. Alternatively, high stringency hybridization conditions may be utilized, detecting BKV only. BK associated tubular necrosis is clearly demonstrated in two cases of BK nephritis.