991 resultados para KATP channel mutations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

CgPdr1p is a Candida glabrata Zn(2)-Cys(6) transcription factor involved in the regulation of the ABC-transporter genes CgCDR1, CgCDR2, and CgSNQ2, which are mediators of azole resistance. Single-point mutations in CgPDR1 are known to increase the expression of at least CgCDR1 and CgCDR2 and thus to contribute to azole resistance of clinical isolates. In this study, we investigated the incidence of CgPDR1 mutations in a large collection of clinical isolates and tested their relevance, not only to azole resistance in vitro and in vivo, but also to virulence. The comparison of CgPDR1 alleles from azole-susceptible and azole-resistant matched isolates enabled the identification of 57 amino acid substitutions, each positioned in distinct CgPDR1 alleles. These substitutions, which could be grouped into three different "hot spots," were gain of function (GOF) mutations since they conferred hyperactivity to CgPdr1p revealed by constitutive high expression of ABC-transporter genes. Interestingly, the major transporters involved in azole resistance (CgCDR1, CgCDR2, and CgSNQ2) were not always coordinately expressed in presence of specific CgPDR1 GOF mutations, thus suggesting that these are rather trans-acting elements (GOF in CgPDR1) than cis-acting elements (promoters) that lead to azole resistance by upregulating specific combinations of ABC-transporter genes. Moreover, C. glabrata isolates complemented with CgPDR1 hyperactive alleles were not only more virulent in mice than those with wild type alleles, but they also gained fitness in the same animal model. The presence of CgPDR1 hyperactive alleles also contributed to fluconazole treatment failure in the mouse model. In conclusion, this study shows for the first time that CgPDR1 mutations are not only responsible for in vitro/in vivo azole resistance but that they can also confer a selective advantage under host conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chloride channels represent a group of targets for major clinical indications. However, molecular screening for chloride channel modulators has proven to be difficult and time-consuming as approaches essentially rely on the use of fluorescent dyes or invasive patch-clamp techniques which do not lend themselves to the screening of large sets of compounds. To address this problem, we have developed a non-invasive optical method, based on digital holographic microcopy (DHM), allowing monitoring of ion channel activity without using any electrode or fluorescent dye. To illustrate this approach, GABA(A) mediated chloride currents have been monitored with DHM. Practically, we show that DHM can non-invasively provide the quantitative determination of transmembrane chloride fluxes mediated by the activation of chloride channels associated with GABA(A) receptors. Indeed through an original algorithm, chloride currents elicited by application of appropriate agonists of the GABA(A) receptor can be derived from the quantitative phase signal recorded with DHM. Finally, chloride currents can be determined and pharmacologically characterized non-invasively simultaneously on a large cellular sampling by DHM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pseudomonas aeruginosa undergoes spontaneous mutation that impairs secretion of several extracellular enzymes during extended cultivation in vitro in rich media, as well as during long-term colonization of the cystic fibrosis lung. A frequent type of strong secretion deficiency is caused by inactivation of the quorum-sensing regulatory gene lasR. Here we analyzed a spontaneously emerging subline of strain PAO1 that exhibited moderate secretion deficiency and partial loss of quorum-sensing control. Using generalized transduction, we mapped the secretion defect to the vfr gene, which is known to control positively the expression of the lasR gene and type II secretion of several proteases. We confirmed this secretion defect by sequencing and complementation of the vfr mutation. In a reconstruction experiment conducted with a 1:1 mixture of wild-type strain PAO1 and a vfr mutant of PAO1, we observed that the vfr mutant had a selective advantage over the wild type after growth in static culture for 4 days. Under these conditions, spontaneous vfr emerged in a strain PAO1 population after four growth cycles, and these mutants accounted for more than 40% of the population after seven cycles. These results suggest that partial or complete loss of quorum sensing and secretion can be beneficial to P. aeruginosa under certain environmental conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé L'étude de l'adaptation d'une entreprise aux mutations socio-économiques affectant son environnement sociétal donc de sa régulation, requiert de prime abord de comprendre et de caractériser ces mutations. I1 importe ensuite de déterminer les actions et stratégies déployées par cette entreprise en réponse aux pressions environnementales, ainsi que leurs éventuelles retombées sur les caractéristiques de l'environnement qui ont suscité ces réponses. Pour prendre part à cette réflexion, nous nous concentrons sur les conditions d'adaptation de la société d'État Togolaise :Togo Télécom, et nous tentons de confronter la réalité de cette évolution aux différents modèles de l'adaptation élaborés par la théorie des organisations. Une analyse concrète des enjeux soulevés par l'environnement de Togo Télécom et de leurs implications pour la société et pour la Nation a été réalisée au sein de l'organisation. Elle a pris appui sur les documents écrits pertinents à la recherche et sur le recueil des avis et perceptions des acteurs politiques, économiques, syndicaux et institutionnels concernés par l'avenir de l'entreprise. Les résultats indiquent que la société a su globalement entreprendre une réforme interne bénéfique qui lui a permis de faire face aux nouvelles réalités de son environnement malgré le boulet de la dette, tout en s'assurant l'attachement et le support de ses parties prenantes. Cette réforme a pu être mise en place notamment grâce à la remarquable capacité d'adaptation de ces parties prenantes et elle a également été à l'origine de la création d'un "réseau "redéfinissant l'organisation du travail sur le marché ainsi que les rôles, les problèmes et les caractéristiques de l'environnement sociétal. Afin de replacer cette relation particulière dans la théorie des organisations, la présente recherche s'applique à montrer comment le modèle de l'entreprise dominée par son environnement permet d'enrichir notre compréhension des solutions déployées par l'entreprise pour s'adapter; il est ici question d'analyser les comportements et réponses de la société à la lumière des principaux modèles théoriques, afin d'une part de déterminer comment chacun se prête à l'analyse d'un cas pratique et d'autre part de faire ressortir les forces et faiblesses de chaque modèle afin de tendre vers un modèle plus intégratif des réalités de notre cas. Dans cet ordre d'idée, notre recherche à l'instar de Morin (i98z) et de Giddens (1987), nous indique entre autres qu'il est primordial de ne pas isoler la théorie des organisations, dans des visions trop unilatérales, avec des points de vue partiels, mais d'adhérer à la réalité linéaire de la récursivité de l'adaptation des sociétés d'État industrielles et commerciales Africaines car ces organisations possèdent des propriétés spécifiques qui dépassent l'univers des ressources, des compétences ou des jeux d'acteurs qui les composent (Morin (198?)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used exome sequencing of blood DNA in four unrelated patients to identify the genetic basis of metaphyseal chondromatosis with urinary excretion of D-2-hydroxy-glutaric acid (MC-HGA), a rare entity comprising severe chondrodysplasia, organic aciduria, and variable cerebral involvement. No evidence for recessive mutations was found; instead, two patients showed mutations in IDH1 predicting p.R132H and p.R132S as apparent somatic mosaicism. Sanger sequencing confirmed the presence of the mutation in blood DNA in one patient, and in blood and saliva (but not in fibroblast) DNA in the other patient. Mutations at codon 132 of IDH1 change the enzymatic specificity of the cytoplasmic isocitrate dehydrogenase enzyme. They result in increased D-2-hydroxy-glutarate production, α-ketoglutarate depletion, activation of HIF-1α (a key regulator of chondrocyte proliferation at the growth plate), and reduction of N-acetyl-aspartyl-glutamate level in glial cells. Thus, somatic mutations in IDH1 may explain all features of MC-HGA, including sporadic occurrence, metaphyseal disorganization, and chondromatosis, urinary excretion of D-2-hydroxy-glutaric acid, and reduced cerebral myelinization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in PLA2G6 gene have variable phenotypic outcome including infantile neuroaxonal dystrophy, atypical neuroaxonal dystrophy, idiopathic neurodegeneration with brain iron accumulation and Karak syndrome. The cause of this phenotypic variation is so far unknown which impairs both genetic diagnosis and appropriate family counseling. We report detailed clinical, electrophysiological, neuroimaging, histologic, biochemical and genetic characterization of 11 patients, from 6 consanguineous families, who were followed for a period of up to 17 years. Cerebellar atrophy was constant and the earliest feature of the disease preceding brain iron accumulation, leading to the provisional diagnosis of a recessive progressive ataxia in these patients. Ultrastructural characterization of patients' muscle biopsies revealed focal accumulation of granular and membranous material possibly resulting from defective membrane homeostasis caused by disrupted PLA2G6 function. Enzyme studies in one of these muscle biopsies provided evidence for a relatively low mitochondrial content, which is compatible with the structural mitochondrial alterations seen by electron microscopy. Genetic characterization of 11 patients led to the identification of six underlying PLA2G6 gene mutations, five of which are novel. Importantly, by combining clinical and genetic data we have observed that while the phenotype of neurodegeneration associated with PLA2G6 mutations is variable in this cohort of patients belonging to the same ethnic background, it is partially influenced by the genotype, considering the age at onset and the functional disability criteria. Molecular testing for PLA2G6 mutations is, therefore, indicated in childhood-onset ataxia syndromes, if neuroimaging shows cerebellar atrophy with or without evidence of iron accumulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A widely dispersed network of hypothalamic GnRH neurons controls the reproductive axis in mammals. Genetic investigation of the human disease model of isolated GnRH deficiency has revealed several key genes crucial for GnRH neuronal ontogeny and GnRH secretion. Among these genes, prokineticin 2 (PROK2), and PROK2 receptor (PROKR2) have recently emerged as critical regulators of reproduction in both mice and humans. Both prok2- and prokr2-deficient mice recapitulate the human Kallmann syndrome phenotype. Additionally, PROK2 and PROKR2 mutations are seen in humans with Kallmann syndrome, thus implicating this pathway in GnRH neuronal migration. However, PROK2/PROKR2 mutations are also seen in normosmic GnRH deficiency, suggesting a role for the prokineticin signaling system in GnRH biology that is beyond neuronal migration. This observation is particularly surprising because mature GnRH neurons do not express PROKR2. Moreover, mutations in both PROK2 and PROKR2 are predominantly detected in the heterozygous state with incomplete penetrance or variable expressivity frequently seen within and across pedigrees. In some of these pedigrees, a "second hit" or oligogenicity has been documented. Besides reproduction, a pleiotropic physiological role for PROK2 is now recognized, including regulation of pain perception, circadian rhythms, hematopoiesis, and immune response. Therefore, further detailed clinical studies of patients with PROK2/PROKR2 mutations will help to map the broader biological role of the PROK2/PROKR2 pathway and identify other interacting genes/proteins that mediate its molecular effects in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methods Ten patients with aniridia from 3 families of Egyptian origin underwent full ophthalmologic, general and neurological examination, and blood drawing. Cerebral MRI was performed in the index case of each family. Genomic DNA was prepared from venous leukocytes and direct sequencing of all the exons and intron-exon junctions of the PAX6 gene was performed after PCR amplification. Results Common features observed in the three families included absence of iris tissue, corneal pannus with different degrees of severity and foveal hypoplasia with severely reduced visual acuity. In families 2 and 3, additional findings such as lens dislocation, lens opacities or polar cataract and glaucoma were observed. We identified two novel (c.170-174delTGGGC [p.L57fs17] and c.475delC [p.R159fs47]) and one known (c.718C>T) PAX6 mutations in the affected members of the 3 families. Systemic and neurological examination was normal in all ten affected patients. Cerebral MRI showed absence of the pineal gland in all three index patients. Severe hypoplasia of the brain anterior commissure was associated to the p.L57fs17mutation, absence of the posterior commissure to both p.R159fs47 and p.R240X, and optic chiasma atrophy and almost complete agenesis of the corpus callosum to p.R240X. Conclusions We identified two novel PAX6 mutations in families with severe aniridia from Northern Egypt, an ethnic group which is not well studied. In addition to common phenotype of aniridia and despite normal neurological examination, absence of the pineal gland was observed in all 3 index patients. The heterogeneity of brain anomalies related to PAX6 mutations is underexplored and is highlighted in this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Dysregulation of voltage-gated sodium channels (Na(v)s) is believed to play a major role in nerve fiber hyperexcitability associated with neuropathic pain. A complete transcriptional characterization of the different isoforms of Na(v)s under normal and pathological conditions had never been performed on mice, despite their widespread use in pain research. Na(v)s mRNA levels in mouse dorsal root ganglia (DRG) were studied in the spared nerve injury (SNI) and spinal nerve ligation (SNL) models of neuropathic pain. In the SNI model, injured and non-injured neurons were intermingled in lumbar DRG, which were pooled to increase the tissue available for experiments. RESULTS: A strong downregulation was observed for every Na(v)s isoform expressed except for Na(v)1.2; even Na(v)1.3, known to be upregulated in rat neuropathic pain models, was lower in the SNI mouse model. This suggests differences between these two species. In the SNL model, where the cell bodies of injured and non-injured fibers are anatomically separated between different DRG, most Na(v)s were observed to be downregulated in the L5 DRG receiving axotomized fibers. Transcription was then investigated independently in the L3, L4 and L5 DRG in the SNI model, and an important downregulation of many Na(v)s isoforms was observed in the L3 DRG, suggesting the presence of numerous injured neurons there after SNI. Consequently, the proportion of axotomized neurons in the L3, L4 and L5 DRG after SNI was characterized by studying the expression of activating transcription factor 3 (ATF3). Using this marker of nerve injury confirmed that most injured fibers find their cell bodies in the L3 and L4 DRG after SNI in C57BL/6 J mice; this contrasts with their L4 and L5 DRG localization in rats. The spared sural nerve, through which pain hypersensitivity is measured in behavioral studies, mostly projects into the L4 and L5 DRG. CONCLUSIONS: The complex regulation of Na(v)s, together with the anatomical rostral shift of the DRG harboring injured fibers in C57BL/6 J mice, emphasize that caution is necessary and preliminary anatomical experiments should be carried out for gene and protein expression studies after SNI in mouse strains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eukaryotes contain inorganic polyphosphate (polyP) and acidocalcisomes, which sequester polyP and store amino acids and divalent cations. Why polyP is sequestered in dedicated organelles is not known. We show that polyP produced in the cytosol of yeast becomes toxic. Reconstitution of polyP translocation with purified vacuoles, the acidocalcisomes of yeast, shows that cytosolic polyP cannot be imported, whereas polyP produced by the vacuolar transporter chaperone (VTC) complex, an endogenous vacuolar polyP polymerase, is efficiently imported and does not interfere with growth. PolyP synthesis and import require an electrochemical gradient, probably as a driving force for polyP translocation. VTC exposes its catalytic domain to the cytosol and carries nine vacuolar transmembrane domains. Mutations in the VTC transmembrane regions, which are likely to constitute the translocation channel, block not only polyP translocation but also synthesis. Given that they are far from the cytosolic catalytic domain of VTC, this suggests that the VTC complex obligatorily couples synthesis of polyP to its import in order to avoid toxic intermediates in the cytosol. Sequestration of otherwise toxic polyP might be one reason for the existence of acidocalcisomes in eukaryotes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marie Unna hereditary hypotrichosis (MUHH) is an autosomal dominant form of genetic hair loss. In a large Chinese family carrying MUHH, we identified a pathogenic initiation codon mutation in U2HR, an inhibitory upstream ORF in the 5' UTR of the gene encoding the human hairless homolog (HR). U2HR is predicted to encode a 34-amino acid peptide that is highly conserved among mammals. In 18 more families from different ancestral groups, we identified a range of defects in U2HR, including loss of initiation, delayed termination codon and nonsense and missense mutations. Functional analysis showed that these classes of mutations all resulted in increased translation of the main HR physiological ORF. Our results establish the link between MUHH and U2HR, show that fine-tuning of HR protein levels is important in control of hair growth, and identify a potential mechanism for preventing hair loss or promoting hair removal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regulation of the epithelial Na(+) channel (ENaC) by ubiquitylation is controlled by the activity of two counteracting enzymes, the E3 ubiquitin-protein ligase Nedd4-2 (mouse ortholog of human Nedd4L) and the ubiquitin-specific protease Usp2-45. Previously, Usp2-45 was shown to decrease ubiquitylation and to increase surface function of ENaC in Xenopus laevis oocytes, whereas the splice variant Usp2-69, which has a different N-terminal domain, was inactive toward ENaC. It is shown here that the catalytic core of Usp2 lacking the N-terminal domain has a reduced ability relative to Usp2-45 to enhance ENaC activity in Xenopus oocytes. In contrast, its catalytic activity toward the artificial substrate ubiquitin-AMC is fully maintained. The interaction of Usp2-45 with ENaC exogenously expressed in HEK293 cells was tested by coimmunoprecipitation. The data indicate that different combinations of ENaC subunits, as well as the α-ENaC cytoplasmic N-terminal but not C-terminal domain, coprecipitate with Usp2-45. This interaction is decreased but not abolished when the cytoplasmic ubiquitylation sites of ENaC are mutated. Importantly, coimmunoprecipitation in HEK293 cells and GST pull-down of purified recombinant proteins show that both the catalytic domain and the N-terminal tail of Usp2-45 physically interact with the HECT domain of Nedd4-2. Taken together, the data support the conclusion that Usp2-45 action on ENaC is promoted by various interactions, including through binding to Nedd4-2 that is suggested to position Usp2-45 favorably for ENaC deubiquitylation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Congenital stationary night blindness (CSNB) is a heterogeneous retinal disorder characterized by visual impairment under low light conditions. This disorder is due to a signal transmission defect from rod photoreceptors to adjacent bipolar cells in the retina. Two forms can be distinguished clinically, complete CSNB (cCSNB) or incomplete CSNB; the two forms are distinguished on the basis of the affected signaling pathway. Mutations in NYX, GRM6, and TRPM1, expressed in the outer plexiform layer (OPL) lead to disruption of the ON-bipolar cell response and have been seen in patients with cCSNB. Whole-exome sequencing in cCSNB patients lacking mutations in the known genes led to the identification of a homozygous missense mutation (c.1807C>T [p.His603Tyr]) in one consanguineous autosomal-recessive cCSNB family and a homozygous frameshift mutation in GPR179 (c.278delC [p.Pro93Glnfs(∗)57]) in a simplex male cCSNB patient. Additional screening with Sanger sequencing of 40 patients identified three other cCSNB patients harboring additional allelic mutations in GPR179. Although, immunhistological studies revealed Gpr179 in the OPL in wild-type mouse retina, Gpr179 did not colocalize with specific ON-bipolar markers. Interestingly, Gpr179 was highly concentrated in horizontal cells and Müller cell endfeet. The involvement of these cells in cCSNB and the specific function of GPR179 remain to be elucidated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: We hypothesized that polymorphic mutations exist that are associated with the emergence of the multinucleoside resistance mutations (MNR), 69 insertion and Q151M. METHODS: The Swiss HIV Cohort Study was screened, and the frequencies of polymorphic mutations in HIV-1 (subtype B) were compared between patients detected with the 69 insertion (n = 17), Q151M (n = 29), ≥2 thymidine analogue mutations (TAM) 1 (n = 400) or ≥2 TAM 2 (n = 249). Logistic regressions adjusted for the antiretroviral treatment history were performed to analyze the association of the polymorphic mutations with MNR. RESULTS: The 69 insertion and TAM 1 were strongly associated and occurred in 94.1% (16 of 17) together. The 69 insertion seemed to emerge as a consequence of the TAM 1 pathway (median years until detection: 6.8 compared with 4.4 for ≥2 TAM 1, P Wilcoxon = 0.009). Frequencies of 8 polymorphic mutations (K43E, V60I, S68G, S162C, T165I, I202V, R211K, F214L) were significantly different between groups. Logistic regression showed that F214L and V60I were associated with the emergence of Q151M/TAM 2 opposed to 69 insertion/TAM 1. S68G, T165I, and I202V were associated with Q151M instead of TAM 2. CONCLUSIONS: Besides antiretroviral therapy, polymorphic mutations may contribute to the emergence of specific MNR mutations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anaplastic lymphoma kinase (ALK) gene is overexpressed, mutated or amplified in most neuroblastoma (NB), a pediatric neural crest-derived embryonal tumor. The two most frequent mutations, ALK-F1174L and ALK-R1275Q, contribute to NB tumorigenesis in mouse models, and cooperate with MYCN in the oncogenic process. However, the precise role of activating ALK mutations or ALK-wt overexpression in NB tumor initiation needs further clarification. Human ALK-wt, ALK-F1174L, or ALK-R1275Q were stably expressed in murine neural crest progenitor cells (NCPC), MONC-1 or JoMa1, immortalized with v-Myc or Tamoxifen-inducible Myc-ERT, respectively. While orthotopic implantations of MONC- 1 parental cells in nude mice generated various tumor types, such as NB, osteo/ chondrosarcoma, and undifferentiated tumors, due to v-Myc oncogenic activity, MONC-1-ALK-F1174L cells only produced undifferentiated tumors. Furthermore, our data represent the first demonstration of ALK-wt transforming capacity, as ALK-wt expression in JoMa1 cells, likewise ALK-F1174L, or ALK-R1275Q, in absence of exogenous Myc-ERT activity, was sufficient to induce the formation of aggressive and undifferentiated neural crest cell-derived tumors, but not to drive NB development. Interestingly, JoMa1-ALK tumors and their derived cell lines upregulated Myc endogenous expression, resulting from ALK activation, and both ALK and Myc activities were necessary to confer tumorigenic properties on tumor-derived JoMa1 cells in vitro.