993 resultados para Joint reconstruction
Resumo:
Image-based (i.e., photo/videogrammetry) and time-of-flight-based (i.e., laser scanning) technologies are typically used to collect spatial data of infrastructure. In order to help architecture, engineering, and construction (AEC) industries make cost-effective decisions in selecting between these two technologies with respect to their settings, this paper makes an attempt to measure the accuracy, quality, time efficiency, and cost of applying image-based and time-of-flight-based technologies to conduct as-built 3D reconstruction of infrastructure. In this paper, a novel comparison method is proposed, and preliminary experiments are conducted. The results reveal that if the accuracy and quality level desired for a particular application is not high (i.e., error < 10 cm, and completeness rate > 80%), image-based technologies constitute a good alternative for time-of-flight-based technologies and significantly reduce the time and cost needed for collecting the data on site.
Resumo:
Modeling of the joint probability density function of the mixture fraction and progress variable with a given covariance value is studied. This modeling is validated using experimental and direct numerical simulation (DNS) data. A very good agreement with experimental data of turbulent stratified flames and DNS data of a lifted hydrogen jet flame is obtained. The effect of using this joint pdf modeling to calculate the mean reaction rate with a flamelet closure in Reynolds averaged Navier-Stokes (RANS) calculation of stratified flames is studied. The covariance effect is observed to be large within the flame brush. The results obtained from RANS calculations using this modeling for stratified jet- and rod-stabilized V-flames are discussed and compared to the measurements as a posteriori validation for the joint probability density function model with the flamelet closure. The agreement between the computed and measured values of flame and turbulence quantities is found to be good. © 2012 Copyright Taylor and Francis Group, LLC.
Resumo:
The tomographic reconstruction of OH* chemiluminescence was performed on two interacting turbulent premixed bluff-body stabilized flames under steady flow conditions and acoustic excitation. These measurements elucidate the complex three-dimensional (3D) vortex-flame interactions which have previously not been accessible. The experiment was performed using a single camera and intensifier, with multiple views acquired by repositioning the camera, permitting calculation of the mean and phase-averaged volumetric OH* distributions. The reconstructed flame structure and phase-averaged dynamics are compared with OH planar laser-induced fluorescence and flame surface density measurements for the first time. The volumetric data revealed that the large-scale vortex-flame structures formed along the shear layers of each flame collide when the two flames meet, resulting in complex 3D flame structures in between the two flames. With a fairly simple experimental setup, it is shown that the tomographic reconstruction of OH* chemiluminescence in forced flames is a powerful tool that can yield important physical insights into large-scale 3D flame dynamics that are important in combustion instability. © 2013 IOP Publishing Ltd.
Resumo:
This paper presents an efficient algorithm for robust network reconstruction of Linear Time-Invariant (LTI) systems in the presence of noise, estimation errors and unmodelled nonlinearities. The method here builds on previous work [1] on robust reconstruction to provide a practical implementation with polynomial computational complexity. Following the same experimental protocol, the algorithm obtains a set of structurally-related candidate solutions spanning every level of sparsity. We prove the existence of a magnitude bound on the noise, which if satisfied, guarantees that one of these structures is the correct solution. A problem-specific model-selection procedure then selects a single solution from this set and provides a measure of confidence in that solution. Extensive simulations quantify the expected performance for different levels of noise and show that significantly more noise can be tolerated in comparison to the original method. © 2012 IEEE.
Resumo:
Reconstruction of biochemical reaction networks (BRN) and genetic regulatory networks (GRN) in particular is a central topic in systems biology which raises crucial theoretical challenges in system identification. Nonlinear Ordinary Differential Equations (ODEs) that involve polynomial and rational functions are typically used to model biochemical reaction networks. Such nonlinear models make the problem of determining the connectivity of biochemical networks from time-series experimental data quite difficult. In this paper, we present a network reconstruction algorithm that can deal with ODE model descriptions containing polynomial and rational functions. Rather than identifying the parameters of linear or nonlinear ODEs characterised by pre-defined equation structures, our methodology allows us to determine the nonlinear ODEs structure together with their associated parameters. To solve the network reconstruction problem, we cast it as a compressive sensing (CS) problem and use sparse Bayesian learning (SBL) algorithms as a computationally efficient and robust way to obtain its solution. © 2012 IEEE.
Resumo:
Networks of controlled dynamical systems exhibit a variety of interconnection patterns that could be interpreted as the structure of the system. One such interpretation of system structure is a system's signal structure, characterized as the open-loop causal dependencies among manifest variables and represented by its dynamical structure function. Although this notion of structure is among the weakest available, previous work has shown that if no a priori structural information is known about the system, not even the Boolean structure of the dynamical structure function is identifiable. Consequently, one method previously suggested for obtaining the necessary a priori structural information is to leverage knowledge about target specificity of the controlled inputs. This work extends these results to demonstrate precisely the a priori structural information that is both necessary and sufficient to reconstruct the network from input-output data. This extension is important because it significantly broadens the applicability of the identifiability conditions, enabling the design of network reconstruction experiments that were previously impossible due to practical constraints on the types of actuation mechanisms available to the engineer or scientist. The work is motivated by the proteomics problem of reconstructing the Per-Arnt-Sim Kinase pathway used in the metabolism of sugars. © 2012 IEEE.
Resumo:
Although musculoskeletal models are commonly used, validating the muscle actions predicted by such models is often difficult. In situ isometric measurements are a possible solution. The base of the skeleton is immobilized and the endpoint of the limb is rigidly attached to a 6-axis force transducer. Individual muscles are stimulated and the resulting forces and moments recorded. Such analyses generally assume idealized conditions. In this study we have developed an analysis taking into account the compliances due to imperfect fixation of the skeleton, imperfect attachment of the force transducer, and extra degrees of freedom (dof) in the joints that sometimes become necessary in fixed end contractions. We use simulations of the rat hindlimb to illustrate the consequences of such compliances. We show that when the limb is overconstrained, i.e., when there are fewer dof within the limb than are restrained by the skeletal fixation, the compliances of the skeletal fixation and of the transducer attachment can significantly affect measured forces and moments. When the limb dofs and restrained dofs are matched, however, the measured forces and moments are independent of these compliances. We also show that this framework can be used to model limb dofs, so that rather than simply omitting dofs in which a limb does not move (e.g., abduction at the knee), the limited motion of the limb in these dofs can be more realistically modeled as a very low compliance. Finally, we discuss the practical implications of these results to experimental measurements of muscle actions.
Resumo:
The failure mode of axially loaded simple, single lap joints formed between thin adherends which are flexible in bending is conventionally described as one of axial peeling. We have observed - using high-speed photography - that it is also possible for failure to be preceded by the separation front, or crack, moving in a transverse direction, i.e. perpendicular to the direction of the axial load. A simple energy balance analysis suggests that the critical load for transverse failure is the same as that for axial separation for both flexible lap joints, where the bulk of the stored elastic energy lies in the adhesive, and structural lap joints in which the energy stored in the adherends dominates. The initiation of the failure is dependent on a local increases in either stress or strain energy to some critical values. In the case of a flexible joint, this will occur within the adhesive layer and the critical site will be close to one of the corners of the joint overlap from which the separation front can proceed either axially or transversely. These conclusions are supported by a finite element analysis of a joint formed between adherends of finite width by a low modulus adhesive. © 2012 Taylor & Francis.
Resumo:
A holographic rendering algorithm using a layer-based structure with angular tiling supports view-dependent shading and accommodation cues. This approach also has the advantages of rapid computation speed and visual reduction of layer gap artefacts compared to other approaches. Holograms rendered with this algorithm are displayed using an SLM to demonstrate view-dependent shading and occlusion. © 2013 SPIE-IS&T.
Resumo:
We demonstrate how the Gaussian process regression approach can be used to efficiently reconstruct free energy surfaces from umbrella sampling simulations. By making a prior assumption of smoothness and taking account of the sampling noise in a consistent fashion, we achieve a significant improvement in accuracy over the state of the art in two or more dimensions or, equivalently, a significant cost reduction to obtain the free energy surface within a prescribed tolerance in both regimes of spatially sparse data and short sampling trajectories. Stemming from its Bayesian interpretation the method provides meaningful error bars without significant additional computation. A software implementation is made available on www.libatoms.org.