999 resultados para Joint conditional distributions
Resumo:
The joint angles of multi-segment foot models have been primarily described using two mathematical methods: the joint coordinate system and the attitude vector. This study aimed to determine whether the angles obtained through these two descriptors are comparable, and whether these descriptors have similar sensitivity to experimental errors. Six subjects walked eight times on an instrumented walkway while the joint angles among shank, hindfoot, medial forefoot, and lateral forefoot were measured. The angles obtained using both descriptors and their sensitivity to experimental errors were compared. There was no overall significant difference between the ranges of motion obtained using both descriptors. However, median differences of more than 6° were noticed for the medial-lateral forefoot joint. For all joints and rotation planes, both descriptors provided highly similar angle patterns (median correlation coefficient: R>0.90), except for the medial-lateral forefoot angle in the transverse plane (median R=0.77). The joint coordinate system was significantly more sensitive to anatomical landmarks misplacement errors. However, the absolute differences of sensitivity were small relative to the joints ranges of motion. In conclusion, the angles obtained using these two descriptors were not identical, but were similar for at least the shank-hindfoot and hindfoot-medial forefoot joints. Therefore, the angle comparison across descriptors is possible for these two joints. Comparison should be done more carefully for the medial-lateral forefoot joint. Moreover, despite different sensitivities to experimental errors, the effects of the experimental errors on the angles were small for both descriptors suggesting that both descriptors can be considered for multi-segment foot models.
Resumo:
Deduction allows us to draw consequences from previous knowledge. Deductive reasoning can be applied to several types of problem, for example, conditional, syllogistic, and relational. It has been assumed that the same cognitive operations underlie solutions to them all; however, this hypothesis remains to be tested empirically. We used event-related fMRI, in the same group of subjects, to compare reasoning-related activity associated with conditional and syllogistic deductive problems. Furthermore, we assessed reasoning-related activity for the two main stages of deduction, namely encoding of premises and their integration. Encoding syllogistic premises for reasoning was associated with activation of BA 44/45 more than encoding them for literal recall. During integration, left fronto-lateral cortex (BA 44/45, 6) and basal ganglia activated with both conditional and syllogistic reasoning. Besides that, integration of syllogistic problems additionally was associated with activation of left parietal (BA 7) and left ventro-lateral frontal cortex (BA 47). This difference suggests a dissociation between conditional and syllogistic reasoning at the integration stage. Our finding indicates that the integration of conditional and syllogistic reasoning is carried out by means of different, but partly overlapping, sets of anatomical regions and by inference, cognitive processes. The involvement of BA 44/45 during both encoding (syllogisms) and premise integration (syllogisms and conditionals) suggests a central role in deductive reasoning for syntactic manipulations and formal/linguistic representations.
Resumo:
The importance of competition between similar species in driving community assembly is much debated. Recently, phylogenetic patterns in species composition have been investigated to help resolve this question: phylogenetic clustering is taken to imply environmental filtering, and phylogenetic overdispersion to indicate limiting similarity between species. We used experimental plant communities with random species compositions and initially even abundance distributions to examine the development of phylogenetic pattern in species abundance distributions. Where composition was held constant by weeding, abundance distributions became overdispersed through time, but only in communities that contained distantly related clades, some with several species (i.e., a mix of closely and distantly related species). Phylogenetic pattern in composition therefore constrained the development of overdispersed abundance distributions, and this might indicate limiting similarity between close relatives and facilitation/complementarity between distant relatives. Comparing the phylogenetic patterns in these communities with those expected from the monoculture abundances of the constituent species revealed that interspecific competition caused the phylogenetic patterns. Opening experimental communities to colonization by all species in the species pool led to convergence in phylogenetic diversity. At convergence, communities were composed of several distantly related but species-rich clades and had overdispersed abundance distributions. This suggests that limiting similarity processes determine which species dominate a community but not which species occur in a community. Crucially, as our study was carried out in experimental communities, we could rule out local evolutionary or dispersal explanations for the patterns and identify ecological processes as the driving force, underlining the advantages of studying these processes in experimental communities. Our results show that phylogenetic relations between species provide a good guide to understanding community structure and add a new perspective to the evidence that niche complementarity is critical in driving community assembly.
Resumo:
The contributions of the correlated and uncorrelated components of the electron-pair density to atomic and molecular intracule I(r) and extracule E(R) densities and its Laplacian functions ∇2I(r) and ∇2E(R) are analyzed at the Hartree-Fock (HF) and configuration interaction (CI) levels of theory. The topologies of the uncorrelated components of these functions can be rationalized in terms of the corresponding one-electron densities. In contrast, by analyzing the correlated components of I(r) and E(R), namely, IC(r) and EC(R), the effect of electron Fermi and Coulomb correlation can be assessed at the HF and CI levels of theory. Moreover, the contribution of Coulomb correlation can be isolated by means of difference maps between IC(r) and EC(R) distributions calculated at the two levels of theory. As application examples, the He, Ne, and Ar atomic series, the C2-2, N2, O2+2 molecular series, and the C2H4 molecule have been investigated. For these atoms and molecules, it is found that Fermi correlation accounts for the main characteristics of IC(r) and EC(R), with Coulomb correlation increasing slightly the locality of these functions at the CI level of theory. Furthermore, IC(r), EC(R), and the associated Laplacian functions, reveal the short-ranged nature and high isotropy of Fermi and Coulomb correlation in atoms and molecules
Resumo:
A topological analysis of intracule and extracule densities and their Laplacians computed within the Hartree-Fock approximation is presented. The analysis of the density distributions reveals that among all possible electron-electron interactions in atoms and between atoms in molecules only very few are located rigorously as local maxima. In contrast, they are clearly identified as local minima in the topology of Laplacian maps. The conceptually different interpretation of intracule and extracule maps is also discussed in detail. An application example to the C2H2, C2H4, and C2H6 series of molecules is presented
Resumo:
A procedure based on quantum molecular similarity measures (QMSM) has been used to compare electron densities obtained from conventional ab initio and density functional methodologies at their respective optimized geometries. This method has been applied to a series of small molecules which have experimentally known properties and molecular bonds of diverse degrees of ionicity and covalency. Results show that in most cases the electron densities obtained from density functional methodologies are of a similar quality than post-Hartree-Fock generalized densities. For molecules where Hartree-Fock methodology yields erroneous results, the density functional methodology is shown to yield usually more accurate densities than those provided by the second order Møller-Plesset perturbation theory
Resumo:
We analyze the effect of research joint ventures (RJVs) on consumer welfare in an international context when collusion can occur. The main novelty of our analysis is to study the differentiated effect of domestic and international RJVs. The recent literature shows that RJVs with collusion harm consumers. However, our results introduce a qualifi cation to this statement: international RJVs with collusion might be bene ficial for consumers when internationalization costs are high. The EU and US competition policy advises against RJVs that facilitate collusion on the grounds of their expected negative effects. Our results suggest that antitrust authorities should distinguish between domestic and international RJVs and, in certain cases, be more benevolent with international RJVs. Keywords: collusion; domestic research joint venture; international research joint venture JEL Classi fication Numbers: K21, L24, L44, O32
Resumo:
State Agency Audit Report
Resumo:
Le 23 et 24 octobre 2003, les représentants des sièges sociaux de l'OMS et du BIT ont rencontré d'autres participants dans le cadre de l'effort conjoint OMS/BIT sur la santé
Resumo:
Given the rate of projected environmental change for the 21st century, urgent adaptation and mitigation measures are required to slow down the on-going erosion of biodiversity. Even though increasing evidence shows that recent human-induced environmental changes have already triggered species' range shifts, changes in phenology and species' extinctions, accurate projections of species' responses to future environmental changes are more difficult to ascertain. This is problematic, since there is a growing awareness of the need to adopt proactive conservation planning measures using forecasts of species' responses to future environmental changes. There is a substantial body of literature describing and assessing the impacts of various scenarios of climate and land-use change on species' distributions. Model predictions include a wide range of assumptions and limitations that are widely acknowledged but compromise their use for developing reliable adaptation and mitigation strategies for biodiversity. Indeed, amongst the most used models, few, if any, explicitly deal with migration processes, the dynamics of population at the "trailing edge" of shifting populations, species' interactions and the interaction between the effects of climate and land-use. In this review, we propose two main avenues to progress the understanding and prediction of the different processes A occurring on the leading and trailing edge of the species' distribution in response to any global change phenomena. Deliberately focusing on plant species, we first explore the different ways to incorporate species' migration in the existing modelling approaches, given data and knowledge limitations and the dual effects of climate and land-use factors. Secondly, we explore the mechanisms and processes happening at the trailing edge of a shifting species' distribution and how to implement them into a modelling approach. We finally conclude this review with clear guidelines on how such modelling improvements will benefit conservation strategies in a changing world. (c) 2007 Rubel Foundation, ETH Zurich. Published by Elsevier GrnbH. All rights reserved.
Resumo:
The mutual information of independent parallel Gaussian-noise channels is maximized, under an average power constraint, by independent Gaussian inputs whose power is allocated according to the waterfilling policy. In practice, discrete signalling constellations with limited peak-to-average ratios (m-PSK, m-QAM, etc) are used in lieu of the ideal Gaussian signals. This paper gives the power allocation policy that maximizes the mutual information over parallel channels with arbitrary input distributions. Such policy admits a graphical interpretation, referred to as mercury/waterfilling, which generalizes the waterfilling solution and allows retaining some of its intuition. The relationship between mutual information of Gaussian channels and nonlinear minimum mean-square error proves key to solving the power allocation problem.
Resumo:
Species distribution models (SDMs) are increasingly proposed to support conservation decision making. However, evidence of SDMs supporting solutions for on-ground conservation problems is still scarce in the scientific literature. Here, we show that successful examples exist but are still largely hidden in the grey literature, and thus less accessible for analysis and learning. Furthermore, the decision framework within which SDMs are used is rarely made explicit. Using case studies from biological invasions, identification of critical habitats, reserve selection and translocation of endangered species, we propose that SDMs may be tailored to suit a range of decision-making contexts when used within a structured and transparent decision-making process. To construct appropriate SDMs to more effectively guide conservation actions, modellers need to better understand the decision process, and decision makers need to provide feedback to modellers regarding the actual use of SDMs to support conservation decisions. This could be facilitated by individuals or institutions playing the role of 'translators' between modellers and decision makers. We encourage species distribution modellers to get involved in real decision-making processes that will benefit from their technical input; this strategy has the potential to better bridge theory and practice, and contribute to improve both scientific knowledge and conservation outcomes.