969 resultados para Jean-Pierre Ronfard


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Excessive CO2 in the present-day ocean-atmosphere system is causing ocean acidification, and is likely to cause a severe biodiversity decline in the future, mirroring effects in many past mass extinctions. Fossil records demonstrate that organisms surviving such events were often smaller than those before, a phenomenon called the Lilliput effect. Here, we show that two gastropod species adapted to acidified seawater at shallow-water CO2 seeps were smaller than those found in normal pH conditions and had higher mass-specific energy consumption but significantly lower whole-animal metabolic energy demand. These physiological changes allowed the animals to maintain calcification and to partially repair shell dissolution. These observations of the long-term chronic effects of increased CO2 levels forewarn of changes we can expect in marine ecosystems as CO2 emissions continue to rise unchecked, and support the hypothesis that ocean acidification contributed to past extinction events. The ability to adapt through dwarfing can confer physiological advantages as the rate of CO2 emissions continues to increase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The late Miocene sediments of the Tyrrhenian ODP Site 654 encompass a deepening sequence which begins with glauconite shallow water sands followed by a rapid transition to deep water sediments and culminates with dolomitic mudstones associated with Messinian evaporites. The sequence compares well with the so-called 'Sahelian cycle' and with post-orogenic cycles recognized in peninsular Italy and Sicily. The studied interval, consisting of 55 m thick nannofossil oozes, belongs to the Globorotalia suterae subzone and lower part of the Globorotalia conomiozea Zone, indicating late Tortonian and early Messinian age, respectively. Biomagnetostratigraphic correlation assigns the Tortonian/ Messinian boundary an age of 6.44-6.45 Ma. In addition, six main events have been recognized, based on the range of keeled globorotaliids and coiling direction changes of keeled and unkeeled globorotaliids, which have been correlated to the geomagnetic time-scale. Comparison with North Atlantic sites and land sections of the Guadalquivir basin and northern Morocco provides good correlations with the events documented in these areas. In particular, Event IV, which predates the FO of Globorotalia conomiozea, may be used to recognize the Tortonian/Messinian boundary in extra-Mediterranean areas where G. conomiozea is missing. Variations in the distribution of different species of Globigerinoides are related to changes in the surficial marine environment. Although no clear trends can be recognized on the oxygen and carbon isotope records of Globigerinoides obliquus, the parallelism between the occurrence of low salinity species (G. sacculifer) and peaks of low 5180 values, as well as that of normal salinity species (G. obliquus) and peaks of high d18O values, suggests strong local changes of environmental conditions. The high amplitude of the fluctuations of d18O values suggests important variations in the salinity of the Tyrrhenian Sea, related to a rapidly changing water budget. The major feature of the carbon isotope record is a large decrease between 7.0 and 6.95 Ma, which therefore predates the 6.2 Ma global 'carbon shift'.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Late Miocene sediments from ODP Sites 652 and 654, drilled on the Sardinian margin in the Western Tyrrhenian Sea, are investigated through mineralogical, micromorphological, geochemical, and microgeochemical analyses. Clay associations appear to be little controlled by conditions of deposition, and largely depend on pre- and post-depositional conditions. The sedimentary series from Central Mediterranean gives very different geodynamic information, according to the sector considered. While relatively stable conditions, like those encountered in Caltanissetta Basin, Sicily, favor the mineralogical expression of warm-temperate and subarid Messinian climate, the Eastern Sardinia margin (Site 654) clay suites mainly reflect the transition from tectonically active to relaxed conditions. The series deposited at the foot of the same margin above a thinner crust (Site 652) experienced the effects of burial diagenesis, enhanced by strong geothermal gradient.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Broadcast spawning marine invertebrates are susceptible to environmental stressors such as climate change, as their reproduction depends on the successful meeting and fertilization of gametes in the water column. Under near-future scenarios of ocean acidification, the swimming behaviour of marine invertebrate sperm is altered. We tested whether this was due to changes in sperm mitochondrial activity by investigating the effects of ocean acidification on sperm metabolism and swimming behaviour in the sea urchin Centrostephanus rodgersii. We used a fluorescent molecular probe (JC-1) and flow cytometry to visualize mitochondrial activity (measured as change in mitochondrial membrane potential, MMP). Sperm MMP was significantly reduced in delta pH -0.3 (35% reduction) and delta pH -0.5 (48% reduction) treatments, whereas sperm swimming behaviour was less sensitive with only slight changes (up to 11% decrease) observed overall. There was significant inter-individual variability in responses of sperm swimming behaviour and MMP to acidified seawater. We suggest it is likely that sperm exposed to these changes in pH are close to their tipping point in terms of physiological tolerance to acidity. Importantly, substantial inter-individual variation in responses of sperm swimming to ocean acidification may increase the scope for selection of resilient phenotypes, which, if heritable, could provide a basis for adaptation to future ocean acidification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Increased oceanic uptake of atmospheric carbon dioxide (CO2) is a threat to marine organisms and ecosystems. Among the most dramatic consequences predicted to date are behavioural impairments in marine fish which appear to be caused by the interference of elevated CO2 with a key neurotransmitter receptor in the brain. In this study, we tested the effects of elevated CO2 on the foraging and shelter-seeking behaviours of the reef-dwelling epaulette shark, Hemiscyllium ocellatum. Juvenile sharks were exposed for 30 d to control CO2 (400 µatm) and two elevated CO2 treatments (615 and 910 µatm), consistent with medium- and high-end projections for ocean pCO2 by 2100. Contrary to the effects observed in teleosts and in some other sharks, behaviour of the epaulette shark was unaffected by elevated CO2. A potential explanation is the remarkable adaptation of H. ocellatum to low environmental oxygen conditions (hypoxia) and diel fluctuations in CO2 encountered in their shallow reef habitat. This ability translates into behavioural tolerance of near-future ocean acidification, suggesting that behavioural tolerance and subsequent adaptation to projected future CO2 levels might be possible in some other fish, if adaptation can keep pace with the rate of rising CO2 levels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The position and intensity of the southern westerly wind belt varies seasonally as a consequence of changes in sea surface temperature. During the austral winter, the belt expands northward and the wind intensity in the core decreases. Conversely, during the summer, the belt contracts, and the intensity within the core is strengthened. Reconstructions of the westerly winds since the last glacial maximum, however, have suggested that changes at a single site reflected shifts throughout the entire southern wind belt. Here we use sedimentological and pollen records to reconstruct precipitation patterns over the past 12,500 yr from sites along the windward side of the Andes. Precipitation at the sites, located in the present core and northern margin of the westerlies, is driven almost entirely by the wind belt, and can be used to reconstruct its intensity. Rather than varying coherently throughout the Holocene epoch, we find a distinct anti-phasing of wind strength between the core and northern margin over multi-millennial timescales. During the early Holocene, the core westerlies were strong whereas the northern margin westerlies were weak. We observe the opposite pattern in the late Holocene. As this variation resembles modern seasonal variability, we suggest that our observed changes in westerly wind strength can best be explained by variations in sea surface temperature in the eastern South Pacific Ocean.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ocean acidification causes corals to calcify at reduced rates, but current understanding of the underlying processes is limited. Here, we conduct a mechanistic study into how seawater acidification alters skeletal growth of the coral Stylophora pistillata. Reductions in colony calcification rates are manifested as increases in skeletal porosity at lower pH, while linear extension of skeletons remains unchanged. Inspection of the microstructure of skeletons and measurements of pH at the site of calcification indicate that dissolution is not responsible for changes in skeletal porosity. Instead, changes occur by enlargement of corallite-calyxes and thinning of associated skeletal elements, constituting a modification in skeleton architecture. We also detect increases in the organic matrix protein content of skeletons formed under lower pH. Overall, our study reveals that seawater acidification not only causes decreases in calcification, but can also cause morphological change of the coral skeleton to a more porous and potentially fragile phenotype.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coral reef organisms are increasingly and simultaneously affected by global and local stressors such as ocean acidification (OA) and reduced light availability. However, knowledge of the interplay between OA and light availability is scarce. We exposed 2 calcifying coral reef species (the scleractinian coral Acropora millepora and the green alga Halimeda opuntia) to combinations of ambient and increased pCO2 (427 and 1073 µatm, respectively), and 2 light intensities (35 and 150 µmol photons/m**2/s) for 16 d. We evaluated the individual and combined effects of these 2 stressors on weight increase, calcification rates, O2 fluxes and chlorophyll a content for the species investigated. Weight increase of A. millepora was significantly reduced by OA (48%) and low light intensity (96%) compared to controls. While OA did not affect coral calcification in the light, it decreased calcification in the dark by 155%, leading to dissolution of the skeleton. H. opuntia weight increase was not affected by OA, but decreased (40%) at low light. OA did not affect algae calcification in the light, but decreased calcification in the dark by 164%, leading to dissolution. Low light significantly reduced gross photosynthesis (56 and 57%), net photosynthesis (62 and 60%) and respiration (43 and 48%) of A. millepora and H. opuntia, respectively. In contrast to A. millepora, H. opuntia significantly increased chlorophyll content by 15% over the course of the experiment. No interactive effects of OA and low light intensity were found on any response variable for either organism. However, A. millepora exhibited additive effects of OA and low light, while H. opuntia was only affected by low light. Thus, this study suggests that negative effects of low light and OA are additive on corals, which may have implications for management of river discharge into coastal coral reefs.