949 resultados para Ionic transport
Resumo:
In this work, composites formed from a mixture of V2O5 and polyaniline (PANI) were investigated, for applications as cathode materials for secondary lithium batteries. Electrochemical quartz crystal microbalance (EQCM) data show that charge compensation in the [PANI]0.3V2O5 nanocomposite is achieved predominantly by Li+ migration. However, the charge compensation in the [PANI]V2O5 microcomposite occurs by Li+ and ClO4- transport. Electrochemical Impedance Spectroscopy (EIS) measurements reveal several benefits of nanohybrid formation, including the achievement of shorter ionic diffusion pathways, the higher diffusion rate of the lithium ion and also the higher electronic conductivity, which are responsible for a synergetic effect of the energy storage properties.
Resumo:
We present a microscopic analysis of shot-noise suppression due to long-range Coulomb interaction in semiconductor devices under ballistic transport conditions. An ensemble Monte Carlo simulator self-consistently coupled with a Poisson solver is used for the calculations. A wide range of injection-rate densities leading to different degrees of suppression is investigated. A sharp tendency of noise suppression at increasing injection densities is found to scale with a dimensionless Debye length related to the importance of space-charge effects in the structure.
Resumo:
The use of ionic liquid analogues as solvents has increased in order to substitute the aqueous solvents in some applications in which the side reactions are undesirable. However these solvents prepared from the mixture in the eutectic proportion of species establishing hydrogen bonds are susceptible of electrochemical reactions. The study of platinum deposition on vitreous carbon in an ionic liquid analogue (2 urea: choli ne chloride) is presented; the electrochemical study has permitted to interpret the sequence of the metal deposition process and simultaneously to analyze the behavior of the ionic liquid analogue along the process. Reduction reactions of the solvent relat ed both to the electronation of choline and hydrogen formation have been detected. Different substrata have been used in order to test the possibility and the extent of these reactions depending on the nature of material. The results indicate that the feas ible electrochemical window of the substrate/solvent is highly dependent of the kind of substrate; the negative limit is tied by the massive hydrogen reaction, reaction enhanced by the electrocatalytic character of the substrate.
Resumo:
The aim of this work is to present the theoretical and experimental aspects of the mirage effect technique. We are especially interested in the concentration mirage effect, which is a powerful tool in the study of electrochemical reactions that produce ionic movements close to electrodes and to get some fundamental information on mass transport and charge transfer during electrochemical processes. Limitations of this technique are discussed as well as the recent attempts to overcome them.
Resumo:
This paper examines the factors that have influenced the energy intensity of the Spanish road freight transport of heavy goods vehicles over the period 1996–2012. This article aims to contribute to a better understanding of the factors behind the energy intensity change of road freight and also to inform the design of measures to improve energy efficiency in road freight transport. The paper uses both annual single-period and chained multi-period multiplicative LMDI-II decomposition analysis. The results suggest that the decrease in the energy intensity of Spanish road freight in the period is explained by the change in the real energy intensity index (lower energy consumption per tonne-kilometre transported), which is partially offset by the behaviour of the structural index (greater share in freight transport of those commodities the transportation of which is more energy intensive). The change in energy intensity is analysed in more depth by quantifying the contribution of each commodity through the attribution of changes in Divisia indices.
Resumo:
A Berner impactor was used to collect size-differentiated aerosol samples from March to August 2003 in the city of Aveiro, on the Portuguese west coast. The samples were analysed for the main water-soluble ion species. The average concentration of sulphate, nitrate, chloride and ammonium was 6.38, 3.09, 1.67 and 1.27 µg m-3, respectively. The results show that SO4(2-) and NH4+ were consistently present in the fine fraction < 1 µm, which represents, on average, 72 and 89% of their total atmospheric concentrations, respectively. The NO3-particles were concentrated in the coarse size. Chloride presented the characteristic coarse mode for marine aerosols. During some spring/summer events, an ammonium surplus was observed (NH4+/SO4(2-) molar ratios > 2), possibly due to greater availability of ammonia coming from agricultural activities or from the neighbouring chemical industrial complex. During the remaining periods, the aerosol was found to be somewhat acidic and predominantly in the form of ammonium bisulphate (NH4+/SO4(2-) molar ratios = 0.5-1.25). Samples collected under a major or exclusive influence of maritime air masses were essentially constituted by coarse particles with enrichment in sea salt, while for air masses of continental origin the contribution of water-soluble ionic species in the fine mode was more pronounced.
Resumo:
This thesis is devoted to investigations of three typical representatives of the II-V diluted magnetic semiconductors, Zn1-xMnxAs2, (Zn1-xMnx)3As2 and p-CdSb:Ni. When this work started the family of the II-V semiconductors was presented by only the compounds belonging to the subgroup II3-V2, as (Zn1-xMnx)3As2, whereas the rest of the materials mentioned above were not investigated at all. Pronounced low-field magnetic irreversibility, accompanied with a ferromagnetic transition, are observed in Zn1-xMnxAs2 and (Zn1-xMnx)3As2 near 300 K. These features give evidence for presence of MnAs nanosize magnetic clusters, responsible for frustrated ground magnetic state. In addition, (Zn1-xMnx)3As2 demonstrates large paramagnetic response due to considerable amount of single Mn ions and small antiferromagnetic clusters. Similar paramagnetic system existing in Zn1-xMnxAs2 is much weaker. Distinct low-field magnetic irreversibility, accompanied with a rapid saturation of the magnetization with increasing magnetic field, is observed near the room temperature in p- CdSb:Ni, as well. Such behavior is connected to the frustrated magnetic state, determined by Ni-rich magnetic Ni1-xSbx nanoclusters. Their large non-sphericity and preferable orientations are responsible for strong anisotropy of the coercivity and saturation magnetization of p- CdSb:Ni. Parameters of the Ni1-xSbx nanoclusters are estimated. Low-temperature resistivity of p-CdSb:Ni is governed by a hopping mechanism of charge transfer. The variable-range hopping conductivity, observed in zero magnetic field, demonstrates a tendency of transformation into the nearest-neighbor hopping conductivity in non-zero magnetic filed. The Hall effect in p-CdSb:Ni exhibits presence of a positive normal and a negative anomalous contributions to the Hall resistivity. The normal Hall coefficient is governed mainly by holes activated into the valence band, whereas the anomalous Hall effect, attributable to the Ni1-xSbx nanoclusters with ferromagnetically ordered internal spins, exhibits a low-temperature power-law resistivity scaling.
Resumo:
In this work carrier-facilitated transport of mercury(II) against its concentration gradient from aqueous 0.04 M hydrochloric acid solution across a liquid membrane containing isopropyl 2-[(isopropoxycarbothiolyl)disulfanyl]ethane thioate (IIDE) as the mobile carrier in chloroform has been investigated. Sodium thiocyanate solution (1.6 M) was the most efficient receiving phase agent among several aqueous reagents tested. Various parameters such as investigated. Under optimum conditions the transport of Hg(II) across the liquid membrane is more than 97% after 2.5 h. The carrier, IIDE, selectively and efficiently could able to transport Hg (II) ions in the presence of other associated metal ions in binary systems.
Resumo:
The effects of ionic strength on ions in aqueous solutions are quite relevant, especially for biochemical systems, in which proteins and amino acids are involved. The teaching of this topic and more specifically, the Debye-Hückel limiting law, is central in chemistry undergraduate courses. In this work, we present a description of an experimental procedure based on the color change of aqueous solutions of bromocresol green (BCG), driven by addition of electrolyte. The contribution of charge product (z+|z-|) to the Debye-Hückel limiting law is demonstrated when the effects of NaCl and Na2SO4 on the color of BCG solutions are compared.
Resumo:
In the present work the aim was to prepare an automatic installation for studies of galvanomagnetic effects in solids and to test it by calibration measurements. As a result required automatic installation was created in this work and test measurements were performed. Created setup automatically provides measurements of the magnetoresistance of the Hall effect with an accuracy of ± 2 µV in the temperature range 2 – 300 K and steady magnetic fields up to 6 T. The test measurements of the glassy carbon samples showed that the setup is reliable, has high sensitivity and is easy to use. The results obtained in the research process are pioneer and will be separately analyzed.
Resumo:
This work is devoted to the development of numerical method to deal with convection diffusion dominated problem with reaction term, non - stiff chemical reaction and stiff chemical reaction. The technique is based on the unifying Eulerian - Lagrangian schemes (particle transport method) under the framework of operator splitting method. In the computational domain, the particle set is assigned to solve the convection reaction subproblem along the characteristic curves created by convective velocity. At each time step, convection, diffusion and reaction terms are solved separately by assuming that, each phenomenon occurs separately in a sequential fashion. Moreover, adaptivities and projection techniques are used to add particles in the regions of high gradients (steep fronts) and discontinuities and transfer a solution from particle set onto grid point respectively. The numerical results show that, the particle transport method has improved the solutions of CDR problems. Nevertheless, the method is time consumer when compared with other classical technique e.g., method of lines. Apart from this advantage, the particle transport method can be used to simulate problems that involve movingsteep/smooth fronts such as separation of two or more elements in the system.
Resumo:
In this work, a new mathematical equation correction approach for overcoming spectral and transport interferences was proposed. The proposal was applied to eliminate spectral interference caused by PO molecules at the 217.0005 nm Pb line, and the transport interference caused by variations in phosphoric acid concentrations. Correction may be necessary at 217.0005 nm to account for the contribution of PO, since Atotal217.0005 nm = A Pb217.0005 nm + A PO217.0005 nm. This may be easily done by measuring other PO wavelengths (e.g. 217.0458 nm) and calculating the relative contribution of PO absorbance (A PO) to the total absorbance (Atotal) at 217.0005 nm: A Pb217.0005 nm = Atotal217.0005 nm - A PO217.0005 nm = Atotal217.0005 nm - k (A PO217.0458 nm). The correction factor k is calculated from slopes of calibration curves built up for phosphorous (P) standard solutions measured at 217.0005 and 217.0458 nm, i.e. k = (slope217.0005 nm/slope217.0458 nm). For wavelength integrated absorbance of 3 pixels, sample aspiration rate of 5.0 ml min-1, analytical curves in the 0.1 - 1.0 mg L-1 Pb range with linearity better than 0.9990 were consistently obtained. Calibration curves for P at 217.0005 and 217.0458 nm with linearity better than 0.998 were obtained. Relative standard deviations (RSD) of measurements (n = 12) in the range of 1.4 - 4.3% and 2.0 - 6.0% without and with mathematical equation correction approach were obtained respectively. The limit of detection calculated to analytical line at 217.0005 nm was 10 µg L-1 Pb. Recoveries for Pb spikes were in the 97.5 - 100% and 105 - 230% intervals with and without mathematical equation correction approach, respectively.
Resumo:
Interest to hole-doped mixed-valence manganite perovskites is connected to the ‘colossal’ magnetoresistance. This effect or huge drop of the resistivity, ρ, in external magnetic field, B, attains usually the maximum value near the ferromagnetic Curie temperature, TC. In this thesis are investigated conductivity mechanisms and magnetic properties of the manganite perovskite compounds LaMnO3+, La1-xCaxMnO3, La1-xCaxMn1-yFeyO3 and La1- xSrxMn1-yFeyO3. When the present work was started the key role of the phase separation and its influence on the properties of the colossal magnetoresistive materials were not clear. Our main results are based on temperature dependencies of the magnetoresistance and magnetothermopower, investigated in the temperature interval of 4.2 - 300 K in magnetic fields up to 10 T. The magnetization was studied in the same temperature range in weak (up to 0.1 T) magnetic fields. LaMnO3+δ is the parent compound for preparation of the hole-doped CMR materials. The dependences of such parameters as the Curie temperature, TC, the Coulomb gap, Δ, the rigid gap, γ, and the localization radius, a, on pressure, p, are observed in LaMnO3+δ. It has been established that the dependences above can be interpreted by increase of the electron bandwidth and decrease of the polaron potential well when p is increased. Generally, pressure stimulates delocalization of the electrons in LaMnO3+δ. Doping of LaMnO3 with Ca, leading to La1-xCaxMnO3, changes the Mn3+/Mn4+ ratio significantly and brings an additional disorder to the crystal lattice. Phase separation in a form of mixture of the ferromagnetic and the spin glass phases was observed and investigated in La1- xCaxMnO3 at x between 0 and 0.4. Influence of the replacement of Mn by Fe is studied in La0.7Ca0.3Mn1−yFeyO3 and La0.7Sr0.3Mn1−yFeyO3. Asymmetry of the soft Coulomb gap and of the rigid gap in the density of localized states, small shift of the centre of the gaps with respect to the Fermi level and cubic asymmetry of the density of states are obtained in La0.7Ca0.3Mn1−yFeyO3. Damping of TC with y is connected to breaking of the double-exchange interaction by doping with Fe, whereas the irreversibility and the critical behavior of the magnetic susceptibility are determined by the phase separation and the frustrated magnetic state of La0.7Sr0.3Mn1−yFeyO3.
Resumo:
Maritime transports are very essential for Finland as over 80% of the foreign trade in the country is seaborne and possibilities to carry out these transports by are limited. Any disruption in maritime transports has negative consequences to many sectors in the Finnish economy. Maritime transport thus represents critical infrastructure for Finland. This report focuses on the importance of maritime transports on security of supply in Finland and for the so called critical industries in particular. The report summarizes the results of the Work Package 2 of the research project STOCA – “Study of cargo flows in the Gulf of Finland in emergency situations”. The aim of the research was to analyze the cargo flows and infrastructure that are vital for maintaining security of supply in Finland, as well as the consequences of disruptions in the maritime traffic for the Finnish critical industries and for the Finnish society. In the report we give a presentation of the infrastructure and transport routes which are critical for maintaining security of supply in Finland. We discuss import dependency of the critical industries, and the importance of the Gulf of Finland ports for Finland. We assess vulnerabilities associated with the critical material flows of the critical industries, and possibilities for alternative routings in case either one or several of the ports in Finland would be closed. As a concrete example of a transport disruption we analyze the consequences of the Finnish stevedore strike at public ports (4.3.–19.3.2010). The strike stopped approximately 80% of the Finnish foreign trade. As a result of the strike Finnish companies could not export their products and/or import raw materials, components and spare parts, or other essential supplies. We carried out personal interviews with representatives of the companies in Finnish critical industries to find out about the problems caused by the strike, how companies carried out they transports and how they managed to continue their operations during the strike. Discussions with the representatives of the companies gave us very practical insights about companies’ preparedness towards transport disruptions in general. Companies in the modern world are very vulnerable to transport disruptions because companies regardless of industries have tried to improve their performance by optimizing their resources and e.g. by reducing their inventory levels. At the same time they have become more and more dependent on continuous transports. Most companies involved in foreign trade have global operations and global supply chains, so any disruption anywhere in the world can have an impact on the operations of the company causing considerable financial loss. The volcanic eruption in Iceland in April 2010 stopping air traffic in the whole Northern Europe and most recently the earth quake causing a tsunami in Japan in March 2011 are examples of severe disruptions causing considerable negative impacts to companies’ supply chains. Even though the Finnish stevedore strike was a minor disruption compared to the natural catastrophes mentioned above, it showed the companies’ vulnerability to transport disruptions very concretely. The Finnish stevedore strike gave a concrete learning experience of the importance of preventive planning for all Finnish companies: it made them re-think their practical preparedness towards transport risks and how they can continue with their daily operations despite the problems. Many companies realized they need to adapt their long-term countermeasures against transport disruptions. During the strike companies did various actions to secure their supply chains. The companies raised their inventory levels before the strike began, they re-scheduled or postponed their deliveries, shifted customer orders between production plants among their company’s production network or in the extreme case bought finished products from their competitor to fulfil their customers’ order. Our results also show that possibilities to prepare against transport disruptions differ between industries. The Finnish society as a whole is very dependent on imports of energy, various raw materials and other supplies needed by the different industries. For many of the Finnish companies in the export industries and e.g. in energy production maritime transport is the only transport mode the companies can use due to large volumes of materials transported or due to other characteristics of the goods. Therefore maritime transport cannot be replaced by any other transport mode. In addition, a significant amount of transports are concentrated in certain ports. From a security of supply perspective attention should be paid to finding ways to decrease import dependency and ensuring that companies in the critical industries can ensure the continuity of their operations.