873 resultados para Intestinal Perforation
Resumo:
OBJECTIVE: The aim of this study was to assess the microcirculatory and metabolic consequences of reduced mesenteric blood flow. DESIGN: Prospective, controlled animal study. SETTING: The surgical research unit of a university hospital. SUBJECTS: A total of 13 anesthetized and mechanically ventilated pigs. INTERVENTIONS: Pigs were subjected to stepwise mesenteric blood flow reduction (15% in each step, n = 8) or served as controls (n = 5). Superior mesenteric arterial blood flow was measured with ultrasonic transit time flowmetry, and mucosal and muscularis microcirculatory perfusion in the small bowel were each measured with three laser Doppler flow probes. Small-bowel intramucosal Pco2 was measured by tonometry, and glucose, lactate (L), and pyruvate (P) were measured by microdialysis. MEASUREMENTS AND MAIN RESULTS: In control animals, superior mesenteric arterial blood flow, mucosal microcirculatory blood flow, intramucosal Pco2, and the lactate/pyruvate ratio remained unchanged. In both groups, mucosal blood flow was better preserved than muscularis blood flow. During stepwise mesenteric blood flow reduction, heterogeneous microcirculatory blood flow remained a prominent feature (coefficient of variation, approximately 45%). A 30% flow reduction from baseline was associated with a decrease in microdialysis glucose concentration from 2.37 (2.10-2.70) mmol/L to 0.57 (0.22-1.60) mmol/L (p < .05). After 75% flow reduction, the microdialysis lactate/pyruvate ratio increased from 8.6 (8.0-14.1) to 27.6 (15.5-37.4, p < .05), and arterial-intramucosal Pco2 gradients increased from 1.3 (0.4-3.5) kPa to 10.8 (8.0-16.0) kPa (p < .05). CONCLUSIONS: Blood flow redistribution and heterogeneous microcirculatory perfusion can explain apparently maintained regional oxidative metabolism during mesenteric hypoperfusion, despite local signs of anaerobic metabolism. Early decreasing glucose concentrations suggest that substrate supply may become crucial before oxygen consumption decreases.
Resumo:
BACKGROUND: Galectins are involved at different stages in inflammation. Galectin-3, although mostly described as proinflammatory, can also act as an immunomodulator by inducing apoptosis in T cells. The present study aims to determine galectin-3 expression in the normal and inflamed intestinal mucosa and to define its role in T cell activity. MATERIALS AND METHODS: Galectin-3 was detected by quantitative polymerase chain reaction with total RNA from endoscopic biopsies and by immunohistochemistry. Biopsies and peripheral blood mononuclear cells (PBMC) were stimulated in vitro and were used to assess the functional consequences of inhibition or exogenous addition of galectin-3. RESULTS: Galectin-3 is expressed at comparable levels in controls and inflammatory bowel disease (IBD) patients in remission. In the normal mucosa, galectin-3 protein was mainly observed in differentiated enterocytes, preferentially at the basolateral side. However, galectin-3 was significantly downregulated in inflamed biopsies from IBD patients. Ex vivo stimulation of uninflamed biopsies with tumor necrosis factor led to similar galectin-3 messenger RNA downregulation as in vivo. When peripheral blood mononuclear cells (PBMC) were analyzed, galectin-3 was mainly produced by monocytes. Upon mitogen stimulation, we observed increased proliferation and decreased activation-induced cell death of peripheral blood T cells in the presence of galectin-3-specific small interfering RNA. In contrast, exogenous addition of recombinant galectin-3 led to reduced proliferation of mitogen-stimulated peripheral blood T cells. CONCLUSIONS: Our results suggest that downregulation of epithelial galectin-3 in the inflamed mucosa reflects a normal immunological consequence, whereas under noninflammatory conditions, its constitutive expression may help to prevent inappropriate immune responses against commensal bacteria or food compounds. Therefore, galectin-3 may prove valuable for manipulating disease activity.
Resumo:
Glucocorticoids are steroid hormones with important functions in development, immune regulation, and glucose metabolism. The adrenal glands are the predominant source of glucocorticoids; however, there is increasing evidence for extraadrenal glucocorticoid synthesis in thymus, brain, skin, and vascular endothelium. We recently identified intestinal epithelial cells as an important source of glucocorticoids, which regulate the activation of local intestinal immune cells. The molecular regulation of intestinal glucocorticoid synthesis is currently unexplored. In this study we investigated the transcriptional regulation of the steroidogenic enzymes P450 side-chain cleavage enzyme and 11beta-hydroxylase, and the production of corticosterone in the murine intestinal epithelial cell line mICcl2 and compared it with that in the adrenocortical cell line Y1. Surprisingly, we observed a reciprocal stimulation pattern in these two cell lines. Elevation of intracellular cAMP induced the expression of steroidogenic enzymes in Y1 cells, whereas it inhibited steroidogenesis in mICcl2 cells. In contrast, phorbol ester induced steroidogenic enzymes in intestinal epithelial cells, which was synergistically enhanced upon transfection of cells with the nuclear receptors steroidogenic factor-1 (NR5A1) and liver receptor homolog-1 (NR5A2). Finally, we observed that basal and liver receptor homolog-1/phorbol ester-induced expression of steroidogenic enzymes in mICcl2 cells was inhibited by the antagonistic nuclear receptor small heterodimer partner. We conclude that the molecular basis of glucocorticoid synthesis in intestinal epithelial cells is distinct from that in adrenal cells, most likely representing an adaptation to the local environment and different requirements.
Resumo:
Intestinal macrophages, preferentially located in the subepithelial lamina propria, represent in humans the largest pool of tissue macrophages. To comply with their main task, i.e. the efficient removal of microbes and particulate matter that might have gained access to the mucosa from the intestinal lumen while maintaining local tissue homeostasis, several phenotypic and functional adaptations evolved. Most notably, microbe-associated molecular pattern (MAMP) receptors, including the lipopolysaccharide receptors CD14 and TLR4, but also the Fc receptors for IgA and IgG are absent on most intestinal Mø. Here we review recent findings on the phenotypic and functional adaptations of intestinal Mø and their implications for the pathogenesis of inflammatory bowel diseases.
Resumo:
OBJECTIVES: To evaluate the effects on intestinal oxygen supply, and mucosal tissue oxygen tension during haemorrhage and after fluid resuscitation with either blood (B; n=7), gelatine (G; n=8), or lactated Ringer's solution (R; n=8) in an autoperfused, innervated jejunal segment in anaesthetized pigs. METHODS: To induce haemorrhagic shock, 50% of calculated blood volume was withdrawn. Systemic haemodynamics, mesenteric venous and systemic acid-base and blood gas variables, and lactate measurements were recorded. A flowmeter was used for measuring mesenteric arterial blood flow. Mucosal tissue oxygen tension (PO(2)muc), jejunal microvascular haemoglobin oxygen saturation (HbO(2)) and microvascular blood flow were measured. Measurements were performed at baseline, after haemorrhage and at four 20 min intervals after fluid resuscitation. After haemorrhage, animals were retransfused with blood, gelatine or lactated Ringer's solution until baseline pulmonary capillary wedge pressure was reached. RESULTS: After resuscitation, no significant differences in macrohaemodynamic parameters were observed between groups. Systemic and intestinal lactate concentration was significantly increased in animals receiving lactated Ringer's solution [5.6 (1.1) vs 3.3 (1.1) mmol litre(-1); 5.6 (1.1) vs 3.3 (1.2) mmol litre(-1)]. Oxygen supply to the intestine was impaired in animals receiving lactated Ringer's solution when compared with animals receiving blood. Blood and gelatine resuscitation resulted in higher HbO(2) than with lactated Ringer's resuscitation after haemorrhagic shock [B, 43.8 (10.4)%; G, 34.6 (9.4)%; R, 28.0 (9.3)%]. PO(2)muc was better preserved with gelatine resuscitation when compared with lactated Ringer's or blood resuscitation [20.0 (8.8) vs 13.8 (7.1) mm Hg, 15.2 (7.2) mm Hg, respectively]. CONCLUSION: Blood or gelatine infusion improves mucosal tissue oxygenation of the porcine jejunum after severe haemorrhage when compared with lactated Ringer's solution.
Resumo:
OBJECTIVE: To describe the in vitro effects of bethanechol on contractility of smooth muscle preparations from the small intestines of healthy cows and define the muscarinic receptor subtypes involved in mediating contraction. SAMPLE POPULATION: Tissue samples from the duodenum and jejunum collected immediately after slaughter of 40 healthy cows. PROCEDURES: Cumulative concentration-response curves were determined for the muscarinic receptor agonist bethanechol with or without prior incubation with subtype-specific receptor antagonists in an organ bath. Effects of bethanechol and antagonists and the influence of intestinal location on basal tone, maximal amplitude (A(max)), and area under the curve (AUC) were evaluated. RESULTS: Bethanechol induced a significant, concentration-dependent increase in all preparations and variables. The effect of bethanechol was more pronounced in jejunal than in duodenal samples and in circular than in longitudinal preparations. Significant inhibition of the effects of bethanechol was observed after prior incubation with muscarinic receptor subtype M(3) antagonists (more commonly for basal tone than for A(max) and AUC). The M(2) receptor antagonists partly inhibited the response to bethanechol, especially for basal tone. The M(3) receptor antagonists were generally more potent than the M(2) receptor antagonists. In a protection experiment, an M(3) receptor antagonist was less potent than when used in combination with an M(2) receptor antagonist. Receptor antagonists for M(1) and M(4) did not affect contractility variables. CONCLUSIONS AND CLINICAL RELEVANCE: Bethanechol acting on muscarinic receptor sub-types M(2) and M(3) may be of clinical use as a prokinetic drug for motility disorders of the duodenum and jejunum in dairy cows.
Resumo:
Digestion of starch requires activities provided by 6 interactive small intestinal enzymes. Two of these are luminal endo-glucosidases named alpha-amylases. Four are exo-glucosidases bound to the luminal surface of enterocytes. These mucosal activities were identified as 4 different maltases. Two maltase activities were associated with sucrase-isomaltase. Two remaining maltases, lacking other identifying activities, were named maltase-glucoamylase. These 4 activities are better described as alpha-glucosidases because they digest all linear starch oligosaccharides to glucose. Because confusion persists about the relative roles of these 6 enzymes, we ablated maltase-glucoamylase gene expression by homologous recombination in Sv/129 mice. We assayed the alpha-glucogenic activities of the jejunal mucosa with and without added recombinant pancreatic alpha-amylase, using a range of food starch substrates. Compared with wild-type mucosa, null mucosa or alpha-amylase alone had little alpha-glucogenic activity. alpha-Amylase amplified wild-type and null mucosal alpha-glucogenesis. alpha-Amylase amplification was most potent against amylose and model resistant starches but was inactive against its final product limit-dextrin and its constituent glucosides. Both sucrase-isomaltase and maltase-glucoamylase were active with limit-dextrin substrate. These mucosal assays were corroborated by a 13C-limit-dextrin breath test. In conclusion, the global effect of maltase-glucoamylase ablation was a slowing of rates of mucosal alpha-glucogenesis. Maltase-glucoamylase determined rates of digestion of starch in normal mice and alpha-amylase served as an amplifier for mucosal starch digestion. Acarbose inhibition was most potent against maltase-glucoamylase activities of the wild-type mouse. The consortium of 6 interactive enzymes appears to be a mechanism for adaptation of alpha-glucogenesis to a wide range of food starches.
Evidence of native starch degradation with human small intestinal maltase-glucoamylase (recombinant)
Resumo:
Action of human small intestinal brush border carbohydrate digesting enzymes is thought to involve only final hydrolysis reactions of oligosaccharides to monosaccharides. In vitro starch digestibility assays use fungal amyloglucosidase to provide this function. In this study, recombinant N-terminal subunit enzyme of human small intestinal maltase-glucoamylase (rhMGAM-N) was used to explore digestion of native starches from different botanical sources. The susceptibilities to enzyme hydrolysis varied among the starches. The rate and extent of hydrolysis of amylomaize-5 and amylomaize-7 into glucose were greater than for other starches. Such was not observed with fungal amyloglucosidase or pancreatic alpha-amylase. The degradation of native starch granules showed a surface furrowed pattern in random, radial, or tree-like arrangements that differed substantially from the erosion patterns of amyloglucosidase or alpha-amylase. The evidence of raw starch granule degradation with rhMGAM-N indicates that pancreatic alpha-amylase hydrolysis is not a requirement for native starch digestion in the human small intestine.
Resumo:
Epithelial cells in the human small intestine express meprin, an astacin-like metalloprotease, which accumulates normally at the brush border membrane and in the gut lumen. Therefore, meprin is targeted towards luminal components. In coeliac disease patients, peptides from ingested cereals trigger mucosal inflammation in the small intestine, disrupting epithelial cell differentiation and function. Using in situ hybridisation on duodenal tissue sections, we observed a marked shift of meprin mRNA expression from epithelial cells, the predominant expression site in normal mucosa, to lamina propria leukocytes in coeliac disease. Meprin thereby gains access to the substrate repertoire present beneath the epithelium.
Resumo:
Triggering receptor expressed on myeloid cells-1 (TREM-1) potently amplifies acute inflammatory responses by enhancing degranulation and secretion of proinflammatory mediators. Here we demonstrate that TREM-1 is also crucially involved in chronic inflammatory bowel diseases (IBD). Myeloid cells of the normal intestine generally lack TREM-1 expression. In experimental mouse models of colitis and in patients with IBD, however, TREM-1 expression in the intestine was upregulated and correlated with disease activity. TREM-1 significantly enhanced the secretion of relevant proinflammatory mediators in intestinal macrophages from IBD patients. Blocking TREM-1 by the administration of an antagonistic peptide substantially attenuated clinical course and histopathological alterations in experimental mouse models of colitis. This effect was also seen when the antagonistic peptide was administered only after the first appearance of clinical signs of colitis. Hence, TREM-1-mediated amplification of inflammation contributes not only to the exacerbation of acute inflammatory disorders but also to the perpetuation of chronic inflammatory disorders. Furthermore, interfering with TREM-1 engagement leads to the simultaneous reduction of production and secretion of a variety of pro-inflammatory mediators such as TNF, IL-6, IL-8 (CXCL8), MCP-1 (CCL2), and IL-1beta. Therefore, TREM-1 may also represent an attractive target for the treatment of chronic inflammatory disorders.
Resumo:
Pneumatosis cystoides intestinalis (PCI) is a rare illness in adults with gas filled blebs found in the submucosa or subserosa of the bowel wall. The main localization is the terminal ileum although all parts of the intestine can be affected. Clinical symptoms can vary from aqueous-slimy, bloody diarrhea to constipation and/or vague abdominal pain. Patients can also be completely asymptomatic. In symptomatic patients the therapy of PI is based on the assumed pathogenesis, so that a combined treatment of metronidazole 1500 mg daily during a period of 6-8 weeks additionally and oxygen application (PaO2 of 200-350 mmHg) for 7 days is suggested. In addition, elemental diets are recommended. Complications are indicated in the literature with 3%. In particular mechanical ileus, invagination and perforation as well as substantial intestinal bleeding up to the volvolus lead to further diagnostic and therapeutic steps. A surgical intervention is reserved for rare cases.