990 resultados para Interpretative structural modeling
Resumo:
The synthesis, characterization and copper(II) coordination chemistry of three new cyclic peptide ligands, PatJ(1) (cyclo-(Ile -Thr- (Gly)Thz-lle-Thr(Gly)Thz)), PatJ(2) (cyclo-(Ile-Thr(Gly)Thz-(D)-Ile-Thr-(Gly)Thz)), and PatL (cyclo-(Ile-Ser-(Gly)Thz-Ile-Ser(Gly)Thz)) are reported. All of these cyclic peptides and PatN (cyclo-(Ile-Ser(Gly)Thz-Ile-Thr-(Gly)Thz)) are derivatives of patellamide A and have a [24]azacrown-8 macrocyclic structure. All four synthetic cyclic peptides have two thiazole rings but, in contrast to patellamide A, no oxazoline rings. The molecular structure of PatJ1, determined by X-ray crystallography, has a saddle conformation with two close-to-co-parallel thiazole rings, very similar to the geometry of patellamide D. The two coordination sites of PatJ1 with thiazole-N and amide-N donors are each well preorganized for transition metal ion binding. The coordination of copper(II) was monitored by UV/Vis spectroscopy, and this reveals various (meta)stable mono- and dinuclear copper(II) complexes whose stoichiometry was confirmed by mass spectra. Two types of dinuclear copper(II) complexes, [Cu-2(H4L)(OH2)(n)](2+) (n = 6, 8) and [Cu-2(H4L)(OH2)(n)] (n=4, 6; L=PatN, PatL, PatJ1, PatJ2) have been identified and analyzed structurally by EPR spectroscopy and a combination of spectra simulations and molecular mechanics calculations (MM-EPR). The four structures are similar to each other and have a saddle conformation, that is, derived from the crystal structure of PatJ(1) by a twist of the two thiozole rings. The small but significant structural differences are characterized by the EPR simulations.
Resumo:
We examined the impact of single-tree selective logging and fuel reduction bums on the abundance of hollow-nesting bird species at a regional scale in southeastern Queensland, Australia. Data were collected on species abundance and habitat structure of dry sclerophyll production forest at 36 sites with known logging and fire histories. Sixteen bird species were recorded with most being resident, territorial, obligate hollow nesters that used hollows that were either small (18 cm diameter). Species densities were typically low, but combinations of two forest management and three habitat structural variables influenced the abundances of eight bird species in different and sometimes conflicting ways. The results suggest that habitat tree management for biodiversity in production forests cannot depend upon habitat structural characteristics alone. Management histories appear to have independent influence (on some bird species) that are distinguishable from their impacts on habitat structure per se. Rather than managing to maximize species abundances to maintain biodiversity, we may be better off managing to avoid extinctions of populations by identifying thresholds of acceptable fluctuations in populations of not only hollow-nesting birds but other forest dependent wildlife relative to scientifically valid forest management and habitat structural surrogates.
Resumo:
As a function of temperature, the layered compound K2Na[Ag(CN)213 displays dramatic variations in luminescence thermochromism with major trend changes occurring around 80 K. In order to understand these interesting optical properties, high-resolution neutron diffraction investigations were performed on a polycrystalline sample of this material in the temperature range from 1.5 to 300 K, and previous synchrotron X-ray data of Larochelle et al. (Solid State Commun. 114, 155 (2000)) were reinterpreted. The corresponding significant structural changes were found to be continuous with an anomalous increase of the monoclinic c-lattice parameter with decreasing temperature, associated with slight reorientations of two inequivalent, approximately linear N-C-Ag-C-N units. In the whole temperature range, the crystal structure is monoclinic with the space group C2/m. Based on the structural results, the major luminescence thermochromism changes around 80 K are attributed to the dominance of a back energy transfer process from low- to high-energy excitons at high temperatures. (E) 2002 Elsevier Science (USA).
Resumo:
A study has been made to investigate the radiation grafting of styrene onto poly(tetrafluoroethylene-co-perfluoropropylvinyl ether) (PFA) substrates, using the simultaneous irradiation method. Two PFA polymers of different comonomer perfluoropropyl vinyl ether (PPVE) content and degree of crystallinity were used. Effects of grafting conditions such as monomer concentrations, type of solvent, dose rate, and irradiation dose on the grafting yield were investigated. Of the six different solvents used, the most efficient in terms of increasing grafting yield were dichloromethane, benzene, and methanol. The degree of grafting increased with increasing radiation dose up to 500 kGy, stabilizing above this dose. However, the grafting yield decreased with an increase in the dose rate. The grafting of styrene onto the PFA substrates was confirmed by FTIR-ATR and micro-Raman spectroscopy, The increase in the overall grafting yield was accompanied by a proportional increase in the penetration depth of the grafts into the substrate.
Resumo:
This article examines whether the emotions of frustration and optimism mediate, fully or partially, the relationship between leadership style and subordinate performance in the context of structural equation modeling. The findings show that transformational leadership has a significant direct influence on frustration and optimism, with the negative influence of frustration having a stronger effect on performance than the positive influence of optimism. Frustration and optimism are found to have a direct influence on performance, and the emotions, frustration and optimism, fully mediate the relationship between transformational leadership and performance. Thus, the effect of transformational leadership style on performance is significant, but indirect. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
This article proposes a more accurate approach to dopant extraction using combined inverse modeling and forward simulation of scanning capacitance microscopy (SCM) measurements on p-n junctions. The approach takes into account the essential physics of minority carrier response to the SCM probe tip in the presence of lateral electric fields due to a p-n junction. The effects of oxide fixed charge and interface state densities in the grown oxide layer on the p-n junction samples were considered in the proposed method. The extracted metallurgical and electrical junctions were compared to the apparent electrical junction obtained from SCM measurements. (C) 2002 American Institute of Physics.
Resumo:
Models for the occurrence of the vibrational instability during rolling known as third octave chatter are presented and discussed. An analysis of rolling mill chatter was performed for the purpose of identifying characteristics of the vibrations and to determine any dependency on the rolling schedule. In particular, a stability criterion for the critical rolling speed is used to predict the maximum rolling speed without chatter instability on schedules from a 5 stand tandem mill rolling thin steel product. The results correlate well with measurements of critical speed occurring on the mill using a vibration monitor: This research provides significant insights into the chatter phenomena and has been used to investigate control methods for suppression of the instability.
Resumo:
MS/MS data derived from the [M-H](-) ions of desulfated caerulein peptides provide (i) sequencing information from a combination of alpha, beta and gamma backbone cleavages, and (ii) identification of specific amino acid side chains by side-chain cleavages [e.g. Ser (-CH2O), Thr (-CH3CHO) and Asp (-H2O)] (fragmentations having no counterparts in positive ion spectra). In addition, delta and/or gamma backbone cleavage ions from Asp residues identify the position of these residues in the peptide. In contrast, neither delta nor gamma cleavage ions are observed from either the Gln2 residue nor from Phe residues. Full structural information can be obtained from a consideration of the positive and negative ion MS/MS data in concert. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
The formation of CdS nanoparticles by reacting mixed Langmuir-Blodgett films of arachidic acid and either octadecylamine or dimethyldioctadecylammonium nitrate on a cadmium-containing subphase with hydrogen sulfide gas has resulted in the identification of a number of structural changes, observed using grazing incidence X-ray diffraction. In the case of octadecylamine, the structure after reaction is a hexagonal close-packed array of surfactant-stabilized nanoclusters, with a lattice constant of a = 17.65 Angstrom. In both octadecylamine and dimethyldioctadecylammonium nitrate films, the presence of a unit cell tilted at 38degrees to the plane of the substrate was found. Despite these changes, the average nanoparticle size was unaffected by the addition of either second component to the film.
Resumo:
Structural and surface property changes of macadamia nut-shell (MNS) char upon activation and high temperature treatment (HTT) were studied by high-resolution nitrogen adsorption, diffuse reflectance infra-red Fourier transform spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption. It is found that activation of MNS char can be divided into the low extent activation which may involve the reactions of internal oxygen-containing groups and leads to the formation of comparatively uniform micropores, and the high extent activation which induces reactions between carbon and activating gas and produces a large amount of micropores. The surface functional groups (SFGs) basically increase with the increase of activation extent, but high extent activation preferentially increases the amount of -C-O and -C=O. HTT in air for a short tithe at a high temperature (1173 K) greatly increases the micropore volume and the amounts of SFGs. By appropriately choosing the activation and HTT conditions, it is possible to control both the textural structure and the type and amounts of SFG. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
The composition of an open-forest lizard assemblage in eastern Australia was examined before and after a low-intensity controlled fire and concurrently compared with that in an adjoining unburnt area. The effect of fire on the available structural environment and the habitat used by two focal species, Carlia vivax and Lygisaurus foliorum, was also examined. Lizard species richness was unaffected by the controlled burn as was the abundance of most species. C. vivax was the only species to display a significant reduction in abundance after fire. While the low-intensity fire resulted in significant changes to the available structural environment, there were no compensatory shifts in the habitat preferences of either C. vivax or L. foliorum. The reduction in abundance of C. vivax was congruent with this species' avoidance of burnt areas. C. vivax displayed a non-random preference for ground cover and litter cover, which were reduced in burnt areas. Changes in the availability of preferred structural habitat features are likely to contribute to changes in the abundance of some lizard species. Therefore, even low-intensity disturbances can have an impact on lizard assemblages if critical habitat features are lost or become limiting.
Resumo:
The effect of heat treatment on the structure of an Australian semi-anthracite char was studied in detail in the 850-1150degreesC temperature range using XRD, HRTEM, and electrical resistivity techniques. It was found that the carbon crystallite size in the char does not change significantly during heat treatment in the temperature range studied, for both the raw coal and its ash-free derivative obtained by acid treatment. However, the fraction of the organized carbon in the raw coal chars, determined by XRD, increased with increase of heat treatment time and temperature, while that for the ash-free coal chars remained almost unchanged. This suggests the occurrence of catalytic ordering during heat treatment, supported by the observation that the electrical resistivity of the raw coal chars decreased with heat treatment, while that of the ash-free coal chars did not vary significantly. Further confirmatory evidence was provided by high resolution transmission electron micrographs depicting well-organized carbon layers surrounding iron particles. It is also found that the fraction of organized carbon does not reach unity, but attains an apparent equilibrium value that increases with increase in temperature, providing an apparent heat of ordering of 71.7 kJ mol(-1) in the temperature range studied. Good temperature-independent correlation was found between the electrical resistivity and the organized carbon fraction, indicating that electrical resistivity is indeed structure sensitive. Good correlation was also found between the electrical resistivity and the reactivity of coal char. All these results strongly suggest that the thermal deactivation is the result of a crystallite-perfecting process, which is effectively catalyzed by the inorganic matter in the coal char. Based on kinetic interpretation of the data it is concluded that the process is diffusion controlled, most likely involving transport of iron in the inter-crystallite nanospaces in the temperature range studied. The activation energy of this transport process is found to be very low, at about 11.8 kJ mol(-1), which is corroborated by model-free correlation of the temporal variation of organized carbon fraction as well as electrical resistivity data using the superposition method, and is suggestive of surface transport of iron. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Numerical modeling of the eddy currents induced in the human body by the pulsed field gradients in MRI presents a difficult computational problem. It requires an efficient and accurate computational method for high spatial resolution analyses with a relatively low input frequency. In this article, a new technique is described which allows the finite difference time domain (FDTD) method to be efficiently applied over a very large frequency range, including low frequencies. This is not the case in conventional FDTD-based methods. A method of implementing streamline gradients in FDTD is presented, as well as comparative analyses which show that the correct source injection in the FDTD simulation plays a crucial rule in obtaining accurate solutions. In particular, making use of the derivative of the input source waveform is shown to provide distinct benefits in accuracy over direct source injection. In the method, no alterations to the properties of either the source or the transmission media are required. The method is essentially frequency independent and the source injection method has been verified against examples with analytical solutions. Results are presented showing the spatial distribution of gradient-induced electric fields and eddy currents in a complete body model.
Resumo:
A thermodynamic approach is developed in this paper to describe the behavior of a subcritical fluid in the neighborhood of vapor-liquid interface and close to a graphite surface. The fluid is modeled as a system of parallel molecular layers. The Helmholtz free energy of the fluid is expressed as the sum of the intrinsic Helmholtz free energies of separate layers and the potential energy of their mutual interactions calculated by the 10-4 potential. This Helmholtz free energy is described by an equation of state (such as the Bender or Peng-Robinson equation), which allows us a convenient means to obtain the intrinsic Helmholtz free energy of each molecular layer as a function of its two-dimensional density. All molecular layers of the bulk fluid are in mechanical equilibrium corresponding to the minimum of the total potential energy. In the case of adsorption the external potential exerted by the graphite layers is added to the free energy. The state of the interface zone between the liquid and the vapor phases or the state of the adsorbed phase is determined by the minimum of the grand potential. In the case of phase equilibrium the approach leads to the distribution of density and pressure over the transition zone. The interrelation between the collision diameter and the potential well depth was determined by the surface tension. It was shown that the distance between neighboring molecular layers substantially changes in the vapor-liquid transition zone and in the adsorbed phase with loading. The approach is considered in this paper for the case of adsorption of argon and nitrogen on carbon black. In both cases an excellent agreement with the experimental data was achieved without additional assumptions and fitting parameters, except for the fluid-solid potential well depth. The approach has far-reaching consequences and can be readily extended to the model of adsorption in slit pores of carbonaceous materials and to the analysis of multicomponent adsorption systems. (C) 2002 Elsevier Science (USA).
Resumo:
A thermodynamic approach based on the Bender equation of state is suggested for the analysis of supercritical gas adsorption on activated carbons at high pressure. The approach accounts for the equality of the chemical potential in the adsorbed phase and that in the corresponding bulk phase and the distribution of elements of the adsorption volume (EAV) over the potential energy for gas-solid interaction. This scheme is extended to subcritical fluid adsorption and takes into account the phase transition in EAV The method is adapted to gravimetric measurements of mass excess adsorption and has been applied to the adsorption of argon, nitrogen, methane, ethane, carbon dioxide, and helium on activated carbon Norit R I in the temperature range from 25 to 70 C. The distribution function of adsorption volume elements over potentials exhibits overlapping peaks and is consistently reproduced for different gases. It was found that the distribution function changes weakly with temperature, which was confirmed by its comparison with the distribution function obtained by the same method using nitrogen adsorption isotherm at 77 K. It was shown that parameters such as pore volume and skeleton density can be determined directly from adsorption measurements, while the conventional approach of helium expansion at room temperature can lead to erroneous results due to the adsorption of helium in small pores of activated carbon. The approach is a convenient tool for analysis and correlation of excess adsorption isotherms over a wide range of pressure and temperature. This approach can be readily extended to the analysis of multicomponent adsorption systems. (C) 2002 Elsevier Science (USA).