882 resultados para International Federation for Documentation
Resumo:
We describe lpdoc, a tool which generates documentation manuals automatically from one or more logic program source files, written in Ciao, ISO-Prolog, and other (C)LP languages. It is particularly useful for documenting library modules, for which it automatically generates a rich description of the module interface. However, it can also be used quite successfully to document full applications. A fundamental advantage of using lpdoc is that it helps maintaining a true correspondence between the program and its documentation, and also identifying precisely to what versión of the program a given printed manual corresponds. The quality of the documentation generated can be greatly enhanced by including within the program text assertions (declarations with types, modes, etc. ...) for the predicates in the program, and machine-readable comments. One of the main novelties of lpdoc is that these assertions and comments are written using the Ciao system asseriion language, which is also the language of communication between the compiler and the user and between the components of the compiler. This allows a significant synergy among specification, debugging, documentation, optimization, etc. A simple compatibility library allows conventional (C)LP systems to ignore these assertions and comments and treat normally programs documented in this way. The documentation can be generated interactively from emacs or from the command line, in many formats including texinfo, dvi, ps, pdf, info, ascii, html/css, Unix nroff/man, Windows help, etc., and can include bibliographic citations and images, lpdoc can also genérate "man" pages (Unix man page format), nicely formatted plain ASCII "readme" files, installation scripts useful when the manuals are included in software distributions, brief descriptions in html/css or info formats suitable for inclusión in on-line Índices of manuals, and even complete WWW and info sites containing on-line catalogs of documents and software distributions. The lpdoc manual, all other Ciao system manuals, and parts of this paper are generated by lpdoc.
Resumo:
We describe lpdoc, a tool which generates documentation manuals automatically from one or more logic program source files, written in ISO-Prolog, Ciao, and other (C)LP languages. It is particularly useful for documenting library modules, for which it automatically generates a rich description of the module interface. However, it can also be used quite successfully to document full applications. A fundamental advantage of using lpdoc is that it helps maintaining a true correspondence between the program and its documentation, and also identifying precisely to what version of the program a given printed manual corresponds. The quality of the documentation generated can be greatly enhanced by including within the program text assertions (declarations with types, modes, etc.) for the predicates in the program, and machine-readable comments. One of the main novelties of lpdoc is that these assertions and comments are written using the Ciao system assertion language, which is also the language of communication between the compiler and the user and between the components of the compiler. This allows a significant synergy among specification, documentation, optimization, etc. A simple compatibility library allows conventional (C)LP systems to ignore these assertions and comments and treat normally programs documented in this way. The documentation can be generated in many formats including texinfo, dvi, ps, pdf, info, html/css, Unix nroff/man, Windows help, etc., and can include bibliographic citations and images. lpdoc can also generate “man” pages (Unix man page format), nicely formatted plain ascii “readme” files, installation scripts useful when the manuals are included in software distributions, brief descriptions in html/css or info formats suitable for inclusion in on-line indices of manuals, and even complete WWW and info sites containing on-line catalogs of documents and software distributions. The lpdoc manual, all other Ciao system manuals, and parts of this paper are generated by lpdoc.
Resumo:
We describe lpdoc, a tool which generates documentation manuals automatically from one or more logic program source files, written in ISO-Prolog, Ciao, and other (C)LP languages. It is particularly useful for documenting library modules, for which it automatically generates a rich description of the module interface. However, it can also be used quite successfully to document full applications. The documentation can be generated in many formats including t e x i n f o, dvi, ps, pdf, inf o, html/css, Unix nrof f/man, Windows help, etc., and can include bibliographic citations and images, lpdoc can also genérate "man" pages (Unix man page format), nicely formatted plain ascii "readme" files, installation scripts useful when the manuals are included in software distributions, brief descriptions in html/css or inf o formats suitable for inclusión in on-line Índices of manuals, and even complete WWW and inf o sites containing on-line catalogs of documents and software distributions. A fundamental advantage of using lpdoc is that it helps maintaining a true correspondence between the program and its documentation, and also identifying precisely to what versión of the program a given printed manual corresponds. The quality of the documentation generated can be greatly enhanced by including within the program text assertions (declarations with types, modes, etc. ...) for the predicates in the program, and machine-readable comments. These assertions and comments are written using the Ciao system assertion language. A simple compatibility library allows conventional (C)LP systems to ignore these assertions and comments and treat normally programs documented in this way. The lpdoc manual, all other Ciao system manuals, and most of this paper, are generated by lpdoc.
Resumo:
The goal of this communication is to offer, through computer-aided design tools, a methodology to recover and virtually reconstruct disappeared buildings of our industrial historical heritage. It will be applied to the case of the flour factory "El Puente Colgante" (The Suspended Bridge) in Aranjuez, which was demolished in 2001. The process is as follows: After a historical analysis of the evolution in time of the flour factory, a field work provides data allowing an info graphic reconstruction of the factory. Once this information has been processed, a lifting of the current state is made with AutoCAD, and a three-dimensional model is built with the Rhinoceros application. Then images of the ensemble are obtained with the applications Rhinoceros and V-Ray, ending with a postproduction with Photoshop. The proposed methodology has permitted to obtain a three-dimensional model of the flour factory ?El Puente Colgante? in Aranjuez, with an accurate virtual reconstruction of its original state prior to demolition. The procedure exposed is susceptible to be generalized for any other example of industrial architecture.
Resumo:
Real-world experimentation facilities accelerate the development of Future Internet technologies and services, advance the market for smart infrastructures, and increase the effectiveness of business processes through the Internet. The federation of facilities fosters the experimentation and innovation with larger and more powerful environment, increases the number and variety of the offered services and brings forth possibilities for new experimentation scenarios. This paper introduces a management solution for cloud federation that automates service provisioning to the largest possible extent, relieves the developers from time-consuming configuration settings, and caters for real-time information of all information related to the whole lifecycle of the provisioned services. This is achieved by proposing solutions to achieve the seamless deployment of services across the federation and ability of services to span across different infrastructures of the federation, as well as monitoring of the resources and data which can be aggregated with a common structure, offered as an open ecosystem for innovation at the developers' disposal. This solution consists of several federation management tools and components that are part of the work on Cloud Federation conducted within XIFI project to build the federation of cloud infrastructures for the Future Internet Lab (FIWARE Lab). We present the design and implementation of the solution-concerned FIWARE Lab management tools and components that are deployed within a federation of 17 cloud infrastructures distributed across Europe.
Resumo:
This study has a double objective: to provide foreign colleagues with an insight into the controversy surrounding the international competitiveness of pig iron produced in Bilbao and also to present previously unpublished documentation regarding the European iron industry, which I have retrieved from the historical archive of Credit Lyonnais of Paris. This information includes the costs of Biscayan, French, British, German and Belgium pig iron broken down into five components (iron ore, coke, flux, labour and other costs), which is useful in determining the reasons why the pig iron from Bilbao became less competitive. The article is made up of three parts. Firstly, I will synthesise the controversy surrounding the competitiveness of the Basque iron and steel industry. Then I will present the itemised costs which provide information to illustrate how Biscayan pig iron was not competitive because it was produced with English coal which was more expensive than that consumed by the European factories located "on top of" or near coal seams. The article will finish with a section that, by way of conclusion, explains the comparative advantage and disadvantage of Bilbao, applying the first model of Alfred Weber's Theory of Industrial Location to three technological advances, occurring between the 1860s and 1913 (malleable iron, Bessemer steel and Thomas steel).
Resumo:
Item 244
Resumo:
Mode of access: Internet.