922 resultados para Interaction of wave and structure


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structure of shikimate kinase from Mycobacterium tuberculosis (MtSK) complexed with MgADP and shikimic acid (shikimate) has been determined at 2.3 Angstrom resolution, clearly revealing the amino acid residues involved in shikimate binding. In MtSK, the Glu61 strictly conserved in SK forms a hydrogen bond and salt-bridge with Arg58 and assists in positioning the guanidinium group of Arg58 for shikimate binding. The carboxyl group of shikimate interacts with Arg58, Gly81, and Arg136, and hydroxyl groups with Asp34 and Gly80. The crystal structure of MtSK-MgADP-shikimate will provide crucial information for elucidation of the mechanism of SK-catalyzed reaction and for the development of a new generation of drugs against tuberculosis. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Annexin 1 (ANXA1), galectin-1 (Gal-1) and galectin-3 (Gal-3) proteins have been identified as important mediators that promote or inhibit leukocyte migration. The expression of these proteins was studied in human neutrophils and endothelial cells (ECs) during a transmigration process induced by IL-8. Upon neutrophil adhesion to EC, a significant increase in the cleaved ANXA1 (LCS3, raised against all ANXA1 isoforms) expression was detected in the plasma membrane of adhered neutrophils and ECs compared to intact ANXA1 isoform (LCPS1, against N-terminus of protein). Adherent neutrophils had elevated Gal-3 levels in the nucleus and cytoplasm, and ECs in their plasma membranes. In contrast, a decrease in the total amounts of Gal-1 was detected in migrated compared to non-migrated neutrophils. Therefore, ANXA1 and Gal-3 changed in their content and localization when neutrophils adhere to endothelia, suggesting a process of sensitive-balance between two endogenous anti- and pro-inflammatory mediators. (c) 2006 International Federation for Cell Biology. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several different methods were used to investigate the vesicle-to-micelle transition induced by the addition of the nonionic surfactant octaethylene glycol n-dodecyl monoether (C12E8) to spontaneously formed vesicle dispersions of dioctadecyldimethylammonium bromide and chloride (DODAX, X = Cl- and Br-). Dynamic light scattering reveals that fast mode micelles are formed upon addition of C12E6. The micellar mode becomes progressively dominant as the C12E8/DODAX molar ratio (R) is increased until the vesicle-to-micelle transition is complete. Turbidity, calorimetry, fluorescence quantum yield, and anisotropy measurements indicate two critical compositions: the first, R-sat, when the vesicle bilayer is saturated with C12E8 and the second, R-sol, which corresponds to the complete vesicle-to-micelle transition. Below R-sat the vesicles swell due to incorporation of the surfactant into the vesicle bilayer, and above R-sat mixed micelles and bilayer structures coexist, the determined R-sat and R-sol range from 0 to 1 and 4 to 6, respectively, depending on the surfactant counterion and the experimental method used. Cryo-transmission electron microscopy micrographs show that when R approximate to 4, micelles coexist with extended bilayer fragments. In pure DODAX (1.0 mM) dispersions, unilamellar vesicles are observed. According to the DSC results, C12E8 lowers the gel-to-liquid crystalline transition temperature, T-m, of DODAX and broadens the main transition peak which disappears around R approximate to 5 and 6 for DODAC and DODAB, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied at a molecular level the interaction of heparins on bothropstoxin-1 (BthTx-1), a phospholipase A(2) toxin. The protein was monitored using gel filtration chromatography, dynamic light scattering (DLS), circular dichroism (CD), attenuated total reflectance Fourier transform infrared (ATR-FTIR) and intrinsic tryptophan fluorescence emission (ITFE) spectroscopy. The elution profile of the protein presents a displacement of the protein peak to larger complexes when interacting with higher concentration of heparin. The DLS results shows two R-h at a molar ratio of 1, one to the distribution of the protein and the second for the action of heparin on BthTx-I structures, and a large distribution with the increase of protein. The interaction is accompanied by significant changes in the CD spectra, showing two common features: a decrease in signal at 208 nm (3 and 6 kDa heparins) and an isodichroic point near 226 nm (3 kDa heparin). FTIR spectra indicate that only a few amino acid residues are involved in this interaction. Alterations in the ITFE by binding heparins suggest that the initial binding occurs on the ventral face of BthTx-1. Together, these results add an experimental and structural basis on the action mechanism of the heparins over the phospholipases A(2) and provide a molecular model to elucidate the interaction of the enzyme-heparin complex at a molecular level. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bothropstoxin-I (BthTx-I) is a Lys49-PLA(2) from the venom of Bothrops jararacussu that lacks detectable catalytic activity, yet causes rapid Ca2+-independent membrane damage. With the aim of understanding the interaction between BthTx-I and amphiphilic molecules, we have studied the interaction of sodium dodecyl sulphate (SDS) with the protein. Circular dichroism and attenuated total reflection Fourier-transform infrared spectra of BthTx-I reveal changes in the alpha-helical organization of the protein at an SDS/BthTx-I molar ratio of 20-25. At SDS/BthTx-I ratios of 40-45 the alpha-helices return to a native-like conformation, although fluorescence emission anisotropy measurements of 2-amino-N-hexadecyl-benzamide (AHBA) demonstrate that the total SDS is below the critical micelle concentration when this transition occurs. These results may be interpreted as the result of SDS accumulation by the BthTx-I homodimer and the formation of a pre-micelle SDS/BthTx-I complex, which may subsequently be released from the protein surface as a free micelle. Similar changes in the alpha-helical organization of BthTx-I were observed in the presence of dipalmitoylphosphatidylcholine liposomes, suggesting that protein structure transitions coupled to organization changes of bound amphiphiles may play a role in the Ca2+-independent membrane damage by Lys49-PLA(2)s. (c) 2006 Elsevier B.V. All rights reserved.