764 resultados para Intelligent Manufacturing
Resumo:
This paper presents the control strategies of nonlinear vehicle suspension using a magnetorheological (MR) damper. We used two different approaches for modeling and control of the mechanical and electrical parts of the suspension systems with the MR damper. First, we have formulated and resolved the control problem in order to design the linear feedback dumping force controller for a nonlinear suspension system. Then the values of the control dumping force functions were transformed into electrical control signals by the application of a fuzzy logic control method. The numerical simulations were provided in order to show the effectiveness of this method for the semi-active control of the quarter-car suspension.
Resumo:
This paper presents an approach to integrate an artificial intelligence (AI) technique, concretely rule-based processing, into mobile agents. In particular, it focuses on the aspects of designing and implementing an appropriate inference engine of small size to reduce migration costs. The main goal is combine two lines of agent research, First, the engineering oriented approach on mobile agent architectures, and, second, the AI related approach on inference engines driven by rules expressed in a restricted subset of first-order predicate logic (FOPL). In addition to size reduction, the main functions of this type of engine were isolated, generalized and implemented as dynamic components, making possible not only their migration with the agent, but also their dynamic migration and loading on demand. A set of classes for representing and exchanging knowledge between rule-based systems was also proposed.
Resumo:
This paper describes a method for the evaluation of pavement condition through artificial neural networks using the MLP backpropagation technique. Two of the most used procedures for detecting the pavement conditions were applied: the overall severity index and the irregularity index. Tests with the model demonstrated that the simulation with the neural network gives better results than the procedures recommended by the highway officials. This network may also be applied for the construction of a graphic computer environment.
Resumo:
The advantages offered by the electronic component LED (Light Emitting Diode) have caused a quick and wide application of this device in replacement of incandescent lights. However, in its combined application, the relationship between the design variables and the desired effect or result is very complex and it becomes difficult to model by conventional techniques. This work consists of the development of a technique, through artificial neural networks, to make possible to obtain the luminous intensity values of brake lights using LEDs from design data.
Resumo:
This work presents a new approach for rainfall measurements making use of weather radar data for real time application to the radar systems operated by institute of Meteorological Research (IPMET) - UNESP - Bauru - SP-Brazil. Several real time adjustment techniques has been presented being most of them based on surface rain-gauge network. However, some of these methods do not regard the effect of the integration area, time integration and distance rainfall-radar. In this paper, artificial neural networks have been applied for generate a radar reflectivity-rain relationships which regard all effects described above. To evaluate prediction procedure, cross validation was performed using data from IPMET weather Doppler radar and rain-gauge network under the radar umbrella. The preliminary results were acceptable for rainfalls prediction. The small errors observed result from the spatial density and the time resolution of the rain-gauges networks used to calibrate the radar.
Resumo:
We describe the design, manufacturing, and testing results of a Nb3Sn superconducting coil in which TiAIV alloys were used instead of stainless steel to reduce the magnetization contribution caused by the heat treatment for the A-15 Nb-3 Sn phase formation that affects the magnetic field homogeneity. Prior to the coil manufacturing several structural materials were studied and evaluated in terms of their mechanical and magnetic properties in as-worked, welded, and heat-treated conditions. The manufacturing process employed the wind-and-react technique followed by vacuum-pressure impregnation(VPI) at 1 MPa atm. The critical steps of the manufacturing process, besides the heat treatment and impregnation, are the wire splicing and joint manufacturing in which copper posts supported by Si3N4 ceramic were used. The coil was tested with and without a background NbTi coil and the results have shown performance exceeding the design quench current confirming the successful coil construction.
Resumo:
The paper describes a novel neural model to estimate electrical losses in transformer during the manufacturing phase. The network acts as an identifier of structural features on electrical loss process, so that output parameters can be estimated and generalized from an input parameter set. The model was trained and assessed through experimental data taking into account core losses, copper losses, resistance, current and temperature. The results obtained in the simulations have shown that the developed technique can be used as an alternative tool to make the analysis of electrical losses on distribution transformer more appropriate regarding to manufacturing process. Thus, this research has led to an improvement on the rational use of energy.
Resumo:
Domains where knowledge representation is too complex to be described analytically and in a deterministic way is very common in the petroleum industry, particularly in the field of exploration and production. In these domains, applications of artificial intelligence techniques are very suitable, especially in cases where the preservation of corporate and technical knowledge is important. The Laboratory for Research on Artificial Intelligence Applied to Petroleum Engineering (LIAP) at Unicamp, has, during the last 10 years, dedicated research efforts to build intelligent systems in well drilling and petroleum production fields. In the following sections, recent advances in intelligent systems, under development in the research laboratory, are described. (C) 2001 Published by Elsevier B.V. B.V.
Resumo:
Linear Matrix Inequalities (LMIs) is a powerful too] that has been used in many areas ranging from control engineering to system identification and structural design. There are many factors that make LMI appealing. One is the fact that a lot of design specifications and constrains can be formulated as LMIs [1]. Once formulated in terms of LMIs a problem can be solved efficiently by convex optimization algorithms. The basic idea of the LMI method is to formulate a given problem as an optimization problem with linear objective function and linear matrix inequalities constrains. An intelligent structure involves distributed sensors and actuators and a control law to apply localized actions, in order to minimize or reduce the response at selected conditions. The objective of this work is to implement techniques of control based on LMIs applied to smart structures.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper describes an urban traffic control system which aims at contributing to a more efficient traffic management system in the cities of Brazil. It uses fuzzy sets, case-based reasoning, and genetic algorithms to handle dynamic and unpredictable traffic scenarios, as well as uncertain, incomplete, and inconsistent information. The system is composed by one supervisor and several controller agents, which cooperate with each other to improve the system's results through Artificial Intelligence Techniques.
Resumo:
The increase of computing power of the microcomputers has stimulated the building of direct manipulation interfaces that allow graphical representation of Linear Programming (LP) models. This work discusses the components of such a graphical interface as the basis for a system to assist users in the process of formulating LP problems. In essence, this work proposes a methodology which considers the modelling task as divided into three stages which are specification of the Data Model, the Conceptual Model and the LP Model. The necessity for using Artificial Intelligence techniques in the problem conceptualisation and to help the model formulation task is illustrated.
Resumo:
This work describes the development of a new program, named SISTAX, for the expert system SISTEMAT. This program allows anyone interested in chemotaxonomy to carry out an intelligent search for organic compounds in databases through chemical structures. When coupled with can efficient encoding system, the program recognizes skeletal types and can find any substructural constraints demanded by the user. An example of an application of the program to the diterpene class found in plants is described.
Resumo:
This work involved the development of a smart system dedicated to surface burning detection in the grinding process through constant monitoring of the process by acoustic emission and electrical power signals. A program in Visual Basic® for Windows® was developed, which collects the signals through an analog-digital converter and further processes them using burning detection algorithms already known. Three other parameters are proposed here and a comparative study carried out. When burning occurs, the newly developed software program sends a control signal warning the operator or interrupting the process, and delivers process information via the Internet. Parallel to this, the user can also interfere in the process via Internet, changing parameters and/or monitoring the grinding process. The findings of a comparative study of the various parameters are also discussed here. Copyright © 2006 by ABCM.