1000 resultados para Integrated Ocean Drilling Program


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to determine shifts in the microbial community structure and potential function based on standard Integrated Ocean Drilling Program (IODP) storage procedures for sediment cores. Standard long-term storage protocols maintain sediment temperature at 4°C for mineralogy, geochemical, and/or geotechnical analysis whereas standard microbiological sampling immediately preserves sediments at -80°C. Storage at 4°C does not take into account populations may remain active over geologic time scales at temperatures similar to storage conditions. Identification of active populations within the stored core would suggest geochemical and geophysical conditions within the core change over time. To test this potential, the metabolically active fraction of the total microbial community was characterized from IODP Expedition 325 Great Barrier Reef sediment cores prior to and following a 3-month storage period. Total RNA was extracted from complementary 2, 20, and 40 m below sea floor sediment samples, reverse transcribed to complementary DNA and then sequenced using 454 FLX sequencing technology, yielding over 14,800 sequences from the six samples. Interestingly, 97.3% of the sequences detected were associated with lineages that changed in detection frequency during the storage period including key biogeochemically relevant lineages associated with nitrogen, iron, and sulfur cycling. These lineages have the potential to permanently alter the physical and chemical characteristics of the sediment promoting misleading conclusions about the in situ biogeochemical environment. In addition, the detection of new lineages after storage increases the potential for a wider range of viable lineages within the subsurface that may be underestimated during standard community characterizations.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overpressures measured with pore pressure penetrometers during Integrated Ocean Drilling Program (IODP) Expedition 308 reach 70% and 60% of the hydrostatic effective stress (View the MathML source) in the first 200 meters below sea floor (mbsf) at Sites U1322 and U1324, respectively, in the deepwater Gulf of Mexico, offshore Louisiana. High overpressures are present within low permeability mudstones where there have been multiple, very large, submarine landslides during the Pleistocene. Beneath 200 mbsf at Site U1324, pore pressures drop significantly: there are no submarine landslides in this mixture of mudstone, siltstone, and sandstone. The penetrometer measurements did not reach the in situ pressure at the end of the deployment. We used a soil model to determine that an extrapolation approach based on the inverse of square route of time (View the MathML source) requires much less decay time to achieve a desirable accuracy than an inverse time (1/t) extrapolation. Expedition 308 examined how rapid and asymmetric sedimentation above a permeable aquifer drives lateral fluid flow, extreme pore pressures, and submarine landslides. We interpret that the high overpressures observed are driven by rapid sedimentation of low permeability material from the ancestral Mississippi River. Reduced overpressure at depth at Site U1324 suggests lateral flow (drainage) whereas high overpressure at Site U1322 requires inflow from below: lateral flow in the underlying permeable aquifer provides one mechanism for these observations. High overpressure near the seafloor reduces slope stability and provides a mechanism for the large submarine landslides and low regional gradient (2°) offshore from the Mississippi delta.