983 resultados para Insect control, Biological.
Resumo:
The arterial baroreceptor reflex system is one of the most powerful and rapidly acting mechanisms for controlling arterial pressure. The purpose of the present review is to discuss data relating sympathetic activity to the baroreflex control of arterial pressure in two different experimental models: neurogenic hypertension by sinoaortic denervation (SAD) and high-renin hypertension by total aortic ligation between the renal arteries in the rat. SAD depresses baroreflex regulation of renal sympathetic activity in both the acute and chronic phases. However, increased sympathetic activity (100%) was found only in the acute phase of sinoaortic denervation. In the chronic phase of SAD average discharge normalized but the pattern of discharges was different from that found in controls. High-renin hypertensive rats showed overactivity of the renin angiotensin system and a great depression of the baroreflexes, comparable to the depression observed in chronic sinoaortic denervated rats. However, there were no differences in the average tonic sympathetic activity or changes in the pattern of discharges in high-renin rats. We suggest that the difference in the pattern of discharges may contribute to the increase in arterial pressure lability observed in chronic sinoaortic denervated rats.
Resumo:
The study of mechanisms which control gene expression in trypanosomatids has developed at an increasing rate since 1989 when the first successful DNA transfection experiments were reported. Using primarily Trypanosoma brucei as a model, several groups have begun to elucidate the basic control mechanisms and to define the cellular factors involved in mRNA transcription, processing and translation in these parasites. This review focuses on the most recent studies regarding a subset of genes that are expressed differentially during the life cycle of three groups of parasites. In addition to T. brucei, I will address studies on gene regulation in a few species of Leishmania and the results obtained by a much more limited group of laboratories studying gene expression in Trypanosoma cruzi. It is becoming evident that the regulatory strategies chosen by different species of trypanosomatids are not similar, and that for these very successful parasites it is probably advantageous to employ multiple mechanisms simultaneously. In addition, with the increasing numbers of parasite genes that have now been submitted to molecular dissection, it is also becoming evident that, among the various strategies for gene expression control, there is a predominance of regulatory pathways acting at the post-transcriptional level.
Resumo:
We have investigated the relationship between fetal hemoglobin (HbF) levels and metabolic control in subjects with insulin-dependent (N = 79) and non-insulin-dependent diabetes mellitus (N = 242). HbF and hemoglobin A1c (HbA1c) levels were increased in subjects with type 1 and type 2 diabetes as compared to levels in nondiabetic individuals (P<0.0001), and were significantly higher in type 1 than in type 2 diabetes subjects. Lower levels of HbA1c and HbF were observed in type 2 diabetes subjects treated by diet, intermediate levels in those treated with oral hypoglycemic agents, and higher levels in those treated with insulin. HbF and HbA1c levels were correlated in type 1 diabetes (R2 = 0.57, P<0.0001) and type 2 diabetes (R2 = 0.58, P<0.0001) subjects. Following intense treatment, twelve diabetic patients showed significant improvement both in HbA1c and HbF values. We conclude that increased HbF levels reflect poor metabolic control in subjects with diabetes mellitus.
Resumo:
The control of CD4 gene expression is essential for proper T lymphocyte development. Signals transmitted from the T-cell antigen receptor (TCR) during the thymic selection processes are believed to be linked to the regulation of CD4 gene expression during specific stages of T cell development. Thus, a study of the factors that control CD4 gene expression may lead to further insight into the molecular mechanisms that drive thymic selection. In this review, we discuss the work conducted to date to identify and characterize the cis-acting transcriptional control elements in the CD4 locus and the DNA-binding factors that mediate their function. From these studies, it is becoming clear that the molecular mechanisms controlling CD4 gene expression are very complex and differ at each stage of development. Thus, the control of CD4 expression is subject to many different influences as the thymocyte develops.
Resumo:
FGF2 elicits a strong mitogenic response in the mouse Y-1 adrenocortical tumor cell line, that includes a rapid and transient activation of the ERK-MAPK cascade and induction of the c-Fos protein. ACTH, itself a very weak mitogen, blocks the mitogenic response effect of FGF2 in the early and middle G1 phase, keeping both ERK-MAPK activation and c-Fos induction at maximal levels. Probing the mitogenic response of Y-1 cells to FGF2 with ACTH is likely to uncover reactions underlying the effects of this hormone on adrenocortical cell growth.
Resumo:
A large number of DNA sequences corresponding to human and animal transcripts have been filed in data banks, as cDNAs or ESTs (expression sequence tags). However, the actual function of their corresponding gene products is still largely unknown. Several of these genes may play a role in regulation of important biological processes such as cell division, differentiation, malignant transformation and oncogenesis. Elucidation of gene function is based on 2 main approaches, namely, overexpression and expression interference, which respectively mimick or suppress a given phenotype. The currently available tools and experimental approaches to gene functional analysis and the most recent advances in mass cDNA screening by functional analysis are discussed.
Resumo:
The use of gene therapy continues to be a promising, yet elusive, alternative for the treatment of cancer. The origins of cancer must be well understood so that the therapeutic gene can be chosen with the highest chance of successful tumor regression. The gene delivery system must be tailored for optimum transfer of the therapeutic gene to the target tissue. In order to accomplish this, we study models of G1 cell-cycle control in both normal and transformed cells in order to understand the reasons for uncontrolled cellular proliferation. We then use this information to choose the gene to be delivered to the cells. We have chosen to study p16, p21, p53 and pRb gene transfer using the pCL-retrovirus. Described here are some general concepts and specific results of our work that indicate continued hope for the development of genetically based cancer treatments.
Resumo:
Juvenile hormone (JH) exerts pleiotropic functions during insect life cycles. The regulation of JH biosynthesis by neuropeptides and biogenic amines, as well as the transport of JH by specific binding proteins is now well understood. In contrast, comprehending its mode of action on target organs is still hampered by the difficulties in isolating specific receptors. In concert with ecdysteroids, JH orchestrates molting and metamorphosis, and its modulatory function in molting processes has gained it the attribute "status quo" hormone. Whereas the metamorphic role of JH appears to have been widely conserved, its role in reproduction has been subject to many modifications. In many species, JH stimulates vitellogenin synthesis and uptake. In mosquitoes, however, this function has been transferred to ecdysteroids, and JH primes the ecdysteroid response of developing follicles. As reproduction includes a variety of specific behaviors, including migration and diapause, JH has come to function as a master regulator in insect reproduction. The peak of pleiotropy was definitely reached in insects exhibiting facultative polymorphisms. In wing-dimorphic crickets, differential activation of JH esterase determines wing length. The evolution of sociality in Isoptera and Hymenoptera has also extensively relied on JH. In primitively social wasps and bumble bees, JH integrates dominance position with reproductive status. In highly social insects, such as the honey bee, JH has lost its gonadotropic role and now regulates division of labor in the worker caste. Its metamorphic role has been extensively explored in the morphological differentiation of queens and workers, and in the generation of worker polymorphism, such as observed in ants.
Resumo:
This review highlights the current advances in knowledge about the safety, efficacy, quality control, marketing and regulatory aspects of botanical medicines. Phytotherapeutic agents are standardized herbal preparations consisting of complex mixtures of one or more plants which contain as active ingredients plant parts or plant material in the crude or processed state. A marked growth in the worldwide phytotherapeutic market has occurred over the last 15 years. For the European and USA markets alone, this will reach about $7 billion and $5 billion per annum, respectively, in 1999, and has thus attracted the interest of most large pharmaceutical companies. Insufficient data exist for most plants to guarantee their quality, efficacy and safety. The idea that herbal drugs are safe and free from side effects is false. Plants contain hundreds of constituents and some of them are very toxic, such as the most cytotoxic anti-cancer plant-derived drugs, digitalis and the pyrrolizidine alkaloids, etc. However, the adverse effects of phytotherapeutic agents are less frequent compared with synthetic drugs, but well-controlled clinical trials have now confirmed that such effects really exist. Several regulatory models for herbal medicines are currently available including prescription drugs, over-the-counter substances, traditional medicines and dietary supplements. Harmonization and improvement in the processes of regulation is needed, and the general tendency is to perpetuate the German Commission E experience, which combines scientific studies and traditional knowledge (monographs). Finally, the trend in the domestication, production and biotechnological studies and genetic improvement of medicinal plants, instead of the use of plants harvested in the wild, will offer great advantages, since it will be possible to obtain uniform and high quality raw materials which are fundamental to the efficacy and safety of herbal drugs.
Resumo:
Abnormal production of interferon alpha (IFN-a) has been found in certain autoimmune diseases and can be also observed after prolonged therapy with IFN-a. IFN-a can contribute to the pathogenesis of allograft rejection in bone marrow transplants. Therefore, the development of IFN-a inhibitors as a soluble receptor protein may be valuable for the therapeutic control of these diseases. We have expressed two polypeptides encoding amino acids 93-260 (P1) and 261-410 (P2) of the extracellular domain of subunit 1 of the interferon-a receptor (IFNAR 1-EC) in E. coli. The activities of the recombinant polypeptides and of their respective antibodies were evaluated using antiproliferative and antiviral assays. Expression of P1 and P2 polypeptides was achieved by transformation of cloned plasmid pRSET A into E. coli BL21(DE3)pLysS and by IPTG induction. P1 and P2 were purified by serial sonication steps and by gel filtration chromatography with 8 M urea and refolded by dialysis. Under reducing SDS-PAGE conditions, the molecular weight of P1 and P2 was 22 and 17 kDa, respectively. Polyclonal anti-P1 and anti-P2 antibodies were produced in mice. P1 and P2 and their respective polyclonal antibodies were able to block the antiproliferative activity of 6.25 nM IFN-aB on Daudi cells, but did not block IFN-aB activity at higher concentrations (>6.25 nM). On the other hand, the polypeptides and their respective antibodies did not inhibit the antiviral activity of IFN-aB on Hep 2/c cells challenged with encephalomyocarditis virus.
Resumo:
The release of adrenocorticotropin (ACTH) from the corticotrophs is controlled principally by vasopressin and corticotropin-releasing hormone (CRH). Oxytocin may augment the release of ACTH under certain conditions, whereas atrial natriuretic peptide acts as a corticotropin release-inhibiting factor to inhibit ACTH release by direct action on the pituitary. Glucocorticoids act on their receptors within the hypothalamus and anterior pituitary gland to suppress the release of vasopressin and CRH and the release of ACTH in response to these neuropeptides. CRH neurons in the paraventricular nucleus also project to the cerebral cortex and subcortical regions and to the locus ceruleus (LC) in the brain stem. Cortical influences via the limbic system and possibly the LC augment CRH release during emotional stress, whereas peripheral input by pain and other sensory impulses to the LC causes stimulation of the noradrenergic neurons located there that project their axons to the CRH neurons stimulating them by alpha-adrenergic receptors. A muscarinic cholinergic receptor is interposed between the alpha-receptors and nitric oxidergic interneurons which release nitric oxide that activates CRH release by activation of cyclic guanosine monophosphate, cyclooxygenase, lipoxygenase and epoxygenase. Vasopressin release during stress may be similarly mediated. Vasopressin augments the release of CRH from the hypothalamus and also augments the action of CRH on the pituitary. CRH exerts a positive ultrashort loop feedback to stimulate its own release during stress, possibly by stimulating the LC noradrenergic neurons whose axons project to the paraventricular nucleus to augment the release of CRH.
Resumo:
We have examined the role of cell surface glycosaminoglycans in cell division: adhesion and proliferation of Chinese hamster ovary (CHO) cells. We used both wild-type (CHO-K1) cells and a mutant (CHO-745) which is deficient in the synthesis of proteoglycans due to lack of activity of xylosyl transferase. Using different amounts of wild-type and mutant cells, little adhesion was observed in the presence of laminin and type I collagen. However, when fibronectin or vitronectin was used as substrate, there was an enhancement in the adhesion of wild-type and mutant cells. Only CHO-K1 cells showed a time-dependent adhesion on type IV collagen. These results suggest that the two cell lines present different adhesive profiles. Several lines of experimental evidence suggest that heparan sulfate proteoglycans play a role in cell adhesion as positive modulators of cell proliferation and as key participants in the process of cell division. Proliferation and cell cycle assays clearly demonstrate that a decrease in the amount of glycosaminoglycans does not inhibit the proliferation of mutant CHO-745 cells when compared to the wild type CHO-K1, in agreement with the findings that both CHO-K1 and CHO-745 cells take 8 h to enter the S phase.
Resumo:
The metabolic derangement caused by diabetes mellitus may potentially affect bone mineral metabolism. In the present study we evaluated the effect of diabetes metabolic control on parathyroid hormone (PTH) secretion during stimulation with EDTA infusion. The study was conducted on 24 individuals, 8 of them normal subjects (group N: glycated hemoglobin - HbA1C = 4.2 ± 0.2%; range = 3.5-5.0%), 8 patients with good and regular metabolic control (group G-R: HbA1C = 7.3 ± 0.4%; range = 6.0-8.5%), and 8 patients with poor metabolic control (group P: HbA1C = 12.5 ± 1.0%; range: 10.0-18.8%). Blood samples were collected at 10-min intervals throughout the study (a basal period of 30 min and a 2-h period of EDTA infusion, 30 mg/kg body weight) and used for the determination of ionized calcium, magnesium, glucose and intact PTH. Basal ionized calcium levels were slightly lower in group P (1.19 ± 0.01 mmol/l) than in group N (1.21 ± 0.01 mmol/l) and group G-R (1.22 ± 0.01 mmol/l). After EDTA infusion, the three groups presented a significant fall in calcium, but with no significant difference among them at any time. Basal magnesium levels and levels determined during EDTA infusion were significantly lower (P<0.01) in group P than in group N. The induction of hypocalcemia caused an elevation in PTH which was similar in groups N and G-R but significantly higher than in group P throughout the infusion period (+110 min, N = 11.9 ± 2.1 vs G-R = 13.7 ± 1.6 vs P = 7.5 ± 0.7 pmol/l; P<0.05 for P vs N and G-R). The present results show that PTH secretion is impaired in patients with poorly controlled diabetes.
Resumo:
Impaired baroreflex sensitivity in diabetes is well described and has been attributed to autonomic diabetic neuropathy. In the present study conducted on acute (10-20 days) streptozotocin (STZ)-induced diabetic rats we examined: 1) cardiac baroreflex sensitivity, assessed by the slope of the linear regression between phenylephrine- or sodium nitroprusside-induced changes in arterial pressure and reflex changes in heart rate (HR) in conscious rats; 2) aortic baroreceptor function by means of the relationship between systolic arterial pressure and aortic depressor nerve (ADN) activity, in anesthetized rats, and 3) bradycardia produced by electrical stimulation of the vagus nerve or by the iv injection of methacholine in anesthetized animals. Reflex bradycardia (-1.4 ± 0.1 vs -1.7 ± 0.1 bpm/mmHg) and tachycardia (-2.1 ± 0.3 vs -3.0 ± 0.2 bpm/mmHg) were reduced in the diabetic group. The gain of the ADN activity relationship was similar in control (1.7 ± 0.1% max/mmHg) and diabetic (1.5 ± 0.1% max/mmHg) animals. The HR response to vagal nerve stimulation with 16, 32 and 64 Hz was 13, 16 and 14% higher, respectively, than the response of STZ-treated rats. The HR response to increasing doses of methacholine was also higher in the diabetic group compared to control animals. Our results confirm the baroreflex dysfunction detected in previous studies on short-term diabetic rats. Moreover, the normal baroreceptor function and the altered HR responses to vagal stimulation or methacholine injection suggest that the efferent limb of the baroreflex is mainly responsible for baroreflex dysfunction in this model of diabetes.
Resumo:
A double-blind, randomized, placebo-controlled study was carried out on 44 hypertensive type 2 diabetic subjects previously treated by diet associated or not with sulfonylurea to assess the effects of acarbose-induced glycemic control on blood pressure (BP) and hormonal parameters. Before randomization and after a 22-week treatment period (100 to 300 mg/day), the subjects were submitted to a standard meal test and to 24-h ambulatory BP monitoring (ABPM) and had plasma glucose, glycosylated hemoglobin, lipid profile, insulin, proinsulin and leptin levels determined. Weight loss was found only in the acarbose-treated group (75.1 ± 11.6 to 73.1 ± 11.6 kg, P<0.01). Glycosylated hemoglobin decreased only in the acarbose group (6.4 ± 1.7 to 5.6 ± 1.9%, P<0.05). Fasting proinsulin decreased only in the acarbose group (23.4 ± 19.3 to 14.3 ± 13.6 pmol/l, P<0.05), while leptin decreased in both (placebo group: 26.3 ± 6.1 to 23.3 ± 9.4 and acarbose group: 25.0 ± 5.5 to 22.7 ± 7.9 ng/ml, P<0.05). When the subset of acarbose-treated patients who improved glycemic control was considered, significant reductions in diurnal systolic, diastolic and mean BP (102.3 ± 6.0 to 99.0 ± 6.6 mmHg, P<0.05) were found. Acarbose monotherapy or combined with sulfonylurea was effective in improving glycemic control in hypertensive diabetic patients. Acarbose-induced improvement in metabolic control may reduce BP in these patients. Our data did not suggest a direct action of acarbose on insulin resistance or leptin levels.