999 resultados para Infrared Rays
Resumo:
Langmuir-Blodgett (LB) films of octadecylammonium octadecanoate (C(18)H(37)j7NH(3)(+)C(17)H(35)COO(-),ODASA) and octadecylammonium octadecanoate-d(35) (C18H37+NH3+C17D35COO-, ODASA-d(53)) were prepared and their thermal behaviors were investigated by variable-temperature Fourier transform infrared transmission spectroscopy. It was found that the two hydrocarbon chains of ODASA molecule in LB films are highly ordered while that protonated (H) chain in ODASA-d(35) is partially disordered with some gauche conformers introduced at room temperature.
Resumo:
A series of D-pi-A-pi-D type of near-infrared (NIR) fluorescent compounds based on benzobis(thia diazole) and its selenium analogues were synthesized and fully characterized by H-1 and C-13 NMR, high-resolution mass spectrometry, and elemental analysis. The absorption fluorescence, and electrochemical properties were also studied. Photoluminescence of these chromophores ranges from 900 to 1600 nm and their band gaps are between 1.19 and 0.56 eV.
Resumo:
Infrared light-emitting diodes possess potential applications in optical communication and safety detection. in this paper, we fabricated near-infrared light-emitting diodes possess potential applications in optical communication and safety detection. in this paper, we fabricated near-infrared polymer light-emitting diode employing a commercial near-infrared (NIR) organic dye as an emissive dopant dispersed within poly(N-vinylcarbazole) (PVK) by spin-casting method. The used device structure was indium tin oxide/3,4-polyethylene-dioxythiophene-polystyrene sulfonate/PVK: NIR dye/Al.
Resumo:
A near-infrared luminescent macroporous material (PL-Macromaterial) and a near-infrared luminescent/magnetic bifunctional macroporous material (MML-Macromaterial) were synthesized by using polystyrene microspheres (PS) and Fe3O4 @polystyrene core-shell nanoparticles (Fe3O4@PS), respectively, as templates. Both the PL-Macromaterial and the M/PL-Macromaterial show the characteristic emission of the Er 3, ion. Moreover, the M/PL-Macromaterial possesses superparamagnetic properties at room temperature.
Resumo:
Layer-controlled hierarchical flowerlike AgIn(MoO4)(2) microstructures with "clean" surfaces using submicroplates as building blocks without introducing any template have been fabricated through a low-cost hydrothermal method. The near-infrared luminescence of lanthanide ion (Nd, Er, and Yb) doped AgIn(MoO4)(2) microstructures, in the 1300-1600 nm region, was discussed and is of particular interest for telecommunication applications. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, electron diffraction, and photoluminescence spectra were used to characterize these materials.
Resumo:
Two beta-diketones 4,4,4-trifluoro-1-2-thenoyl-1,3-butanedione (Htta) and 4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedione (Htfnb), which contain trifluoroalkyl chain, were selected as the main sensitizer for synthesizing Tm(L)(3)phen (L = tta, tfnb) complexes. The two near-infrared (NIR) luminescent thulium complexes have been covalently bonded to the ordered mesoporous material MCM-41 via a functionalized 1,10-phenanthroline (phen) group 5-(N,N-bis-3-(triethoxysilyl)propyl)ureyl-1,10-phenanthroline (phen-Si) [The resultant mesoporous materials are denoted as Tm(L)(3)phen-MCM-41 (L = tta, tfnb)]. The Tm(L)(3)phen-MCM-41 (L = tta, tfnb) mesoporous materials were characterized by small-angle Xray diffraction (XRD) and N-2 adsorption/desorption, and they show characteristic mesoporous structure of MCM-41.
Resumo:
CuIn(WO4)(2) porous nanospindles and nanorods were synthesized through a low-cost hydrothermal method without introducing any template or surfactants. An interesting formation mechanism, namely "oriented attachment", was observed for the growth of nanorods based on the experimental process and the anisotropic intrinsic crystalline structure of CuIn(WO4)(2), which is uncommon in such a system. The near-infrared luminescence of lanthanide ions (Er, Nd, Yb and Ho) doped CuIn(WO4)(2) nanostructures, especially in the 1300-1600 nm region, was discussed and of particular interest for telecommunications applications. X-Ray diffraction, scanning electron microscopy, transmission electron microscopy, electron diffraction and photoluminescence spectra were used to characterize these materials.
Resumo:
A series of dysprosium complex doped xerogels with the same first ligand (acac = acetylacetone) and different neutral ligands were synthesized in situ via a sol-gel process. The Fourier transform infrared (FTIR) spectra, diffuse reflectance (DR) spectra, and near-infrared (NIR) luminescent properties of dysprosium complexes and dysprosium complex doped xerogels are described in detail. The results reveal that the dysprosium complex is successfully synthesized in situ in the corresponding xerogel. Excitation at the maximum absorption wavelength of the ligands resulted in the characteristic NIR luminescence of the Dy3+ ion, which contributes to the energy transfer from the ligands to the central Dy3+ ion in both the dysprosium complexes and xerogels via an antenna effect.
Resumo:
in this communication, a novel Er3+ complex Er(PT)(3)TPPO [PT = 1-phenyl-3-methyl-4-tert-butylbenzoyl-5-pyrazolone, TPPO = triphenyl phosphine oxide] is successfully synthesized and characterized by elemental analysis and single-crystal X-ray diffraction. Its optical properties and the energy transfer process from the ligand PT to the Er3+ ion are investigated, the typical near-infrared (NIR) luminescence (centered at around 1530 nm) is attributed to the I-4(13/2) -> I-4(15/2) transition of Er3+ ion which results from the efficient energy transfer from PT to Er3+ ion (an antenna effect). The wider full width at half maximum (78 nm) peaked at 1530 nm in the emission spectrum and the Judd-Ofelt theory calculation on the radiative properties suggest that Er(PT)(3)TPPO should be a promising candidate for tunable lasers and planar optical amplifiers.
Resumo:
A trivalent neodymium ion (Nd3+) complex Nd(PM)(3)(TP)(2) was synthesized, and its optical properties was studied by introducing Judd-Ofelt theory to calculate the radiative transition rate and the radiative decay time of the F-4(3/2) -> (4)l(J), transitions in this Nd(III) complex. The strong emissions of this complex at near-infrared region were owing to the efficient energy transfer from ligands to center metal ion. The potential application of this complex in NIR electroluminescence was studied by fabricating several devices. The maximum NIR irradiance was obtained as 2.1 mW/m(2) at 16.5 V.
Resumo:
A series of novel, colorless, and transparent sot-gel derived hybrid materials Ln-DBM-Si covalently grafted with Ln(DBM-OH)(3)center dot 2H(2)O (where DBM-OH = o-hydroxydibenzoylmethane, Ln = Nd, Er, Yb, and Sin) were prepared through the primary beta-diketone ligand DBM-OH. The structures and optical properties of Ln-DBM-Si were studied in detail. The investigation results revealed that the lanthanide complexes were successfully in situ grafted into the corresponding hybrids Ln-DBM-Si. Upon excitation at the maximum absorption of ligands, the resultant materials displayed excellent near-infrared luminescence.
Resumo:
A beta-diketone ligand 4,4,5,5,5-pentafluoro-1-(2-naphthyl)-1,3-butanedione (Hpfnp), which contains a pentafluoroalkyl chain, was synthesized as the main sensitizer for synthesizing new near-infrared (NIR) luminescent Ln(pfnp)(3)phen (phen = 1,10-phenanthroline) (Ln = Er, Nd, Yb, Sm) complexes. At the same time, a series of lanthanide complexes covalently bonded to xerogels by the ligand 5-(N,N-bis-3-(triethoxysilyl)propyl)ureyl-1,10-phenanthroline (phen-Si) were synthesized in situ via a sol-gel process. [The obtained materials are denoted as xerogel-bonded Ln complexes (Ln = Er, Nd, Yb, Sm).] The single crystal structures of the Ln(pfnp) 3phen complexes were determined.
Resumo:
The crystal structure of a ternary Tm(DBM)(3)phen complex (DBM - dibenzoylmethane; phen = 1. 10-phenanthroline) and the synthesis of hybrid mesoporous material in which the complex covalently bonded to mesoporous MCM-41 are reported. Crystal data: Tm(DBM)(3)phen C59H47N2O7Tm, monoclinic P21/c, a = 19.3216(12) A, b = 10.6691(7) A, c = 23.0165(15)A, alpha = 90, beta = 91.6330(10), gamma = 90, V = 4742.8(5) A(3), Z = 4. The properties of the Tm(DBM)(3)phen complex and the corresponding hybrid mesoporous material [Tm(DBM)(3)phen-MCM-41] have been studied. The results reveal that the Tm(DBM)(3)phen complex is successfully covalently bonded to MCM-41.
Resumo:
In this work, a new fluorescent method for sensitive detection of biological thiols in human plasma was developed using a near-infrared (NIR) fluorescent dye, FR 730. The sensing approach was based on the strong affinity of thiols to gold and highly efficient fluorescent quenching ability of gold nanoparticles (Au NPs). In the presence of thiols, the NIR fluorescence would enhance dramatically due to desorption of FR 730 from the surfaces of Au NPs, which allowed the analysis of thiol-containing amino acids in a very simple approach. The size of Au NPs was found to affect the fluorescent assay and the best response for cysteine detection was achieved when using Au NPs with the diameter of 24 nm, where a linear range of 2.5 x 10(-8) M to 4.0 x 10(-6) M and a detection limit of as low as 10 nM was obtained. This method also demonstrated a high selectivity to thiol-containing amino acids due to the strong affinity of thiols to gold.
Resumo:
A series of NIR organic chromophores with donor-pi-acceptor-pi-donor structure are synthesized. Good thermal stability and strong photoluminescence in solid state render them suitable for application in light-emitting diodes. Exclusive near-infrared emission at 1080 nm with external quantum efficiency of 0.28% is obtained from the nondoped OLEDs. The longest electroluminescence wave-length is 1220 nm.