923 resultados para Information retrieval, dysorthography, dyslexia, finite state machines, readability
Resumo:
During the development of the somatic genome from the Paramecium germline genome the bulk of the copies of ∼45 000 unique, internal eliminated sequences (IESs) are deleted. IES targeting is facilitated by two small RNA (sRNA) classes: scnRNAs, which relay epigenetic information from the parental nucleus to the developing nucleus, and iesRNAs, which are produced and used in the developing nucleus. Why only certain IESs require sRNAs for their removal has been enigmatic. By analyzing the silencing effects of three genes: PGM (responsible for DNA excision), DCL2/3 (scnRNA production) and DCL5 (iesRNA production), we identify key properties required for IES elimination. Based on these results, we propose that, depending on the exact combination of their lengths and end bases, some IESs are less efficiently recognized or excised and have a greater requirement for targeting by scnRNAs and iesRNAs. We suggest that the variation in IES retention following silencing of DCL2/3 is not primarily due to scnRNA density, which is comparatively uniform relative to IES retention, but rather the genetic properties of IESs. Taken together, our analyses demonstrate that in Paramecium the underlying genetic properties of developmentally deleted DNA sequences are essential in determining the sensitivity of these sequences to epigenetic control.
Resumo:
Eukaryotic mRNAs with premature translation-termination codons (PTCs) are recognized and eliminated by nonsense-mediated mRNA decay (NMD). NMD substrates can be degraded by different routes that all require phosphorylated UPF1 (P-UPF1) as a starting point. The endonuclease SMG6, which cleaves mRNA near the PTC, is one of the three known NMD factors thought to be recruited to nonsense mRNAs via an interaction with P-UPF1, leading to eventual mRNA degradation. By artificial tethering of SMG6 and mutants thereof to a reporter mRNA combined with knockdowns of various NMD factors, we demonstrate that besides its endonucleolytic activity, SMG6 also requires UPF1 and SMG1 to reduce reporter mRNA levels. Using in vivo and in vitro approaches, we further document that SMG6 and the unique stalk region of the UPF1 helicase domain, along with a contribution from the SQ domain, form a novel interaction and we also show that this region of the UPF1 helicase domain is critical for SMG6 function and NMD. Our results show that this interaction is required for NMD and for the capability of tethered SMG6 to degrade its bound RNA, suggesting that it contributes to the intricate regulation of UPF1 and SMG6 enzymatic activities.
Resumo:
PURPOSE Fundus autofluorescence (AF) is characterized not only by its intensity or excitation and emission spectra but also by the lifetimes of the fluorophores. Fluorescence lifetime is influenced by the fluorophore's microenvironment and may provide information about the metabolic tissue state. We report quantitative and qualitative autofluorescence lifetime imaging of the ocular fundus in mice. METHODS A fluorescence lifetime imaging ophthalmoscope (FLIO) was used to measure fluorescence lifetimes of endogenous fluorophores in the murine retina. FLIO imaging was performed in 1-month-old C57BL/6, BALB/c, and C3A.Cg-Pde6b(+)Prph2(Rd2)/J mice. Measurements were repeated at monthly intervals over the course of 6 months. For correlation with structural changes, an optical coherence tomogram was acquired. RESULTS Fundus autofluorescence lifetime images were readily obtained in all mice. In the short spectral channel (498-560 nm), mean ± SEM AF lifetimes were 956 ± 15 picoseconds (ps) in C57BL/6; 801 ± 35 ps in BALB/c mice; and 882 ± 37 ps in C3A.Cg-Pde6b(+)Prph2(Rd2)/J mice. In the long spectral channel (560-720 nm), mean ± SEM AF lifetimes were 298 ± 14 ps in C57BL/6 mice, 241 ± 10 ps in BALB/c mice, and 288 ± 8 ps in C3A.Cg-Pde6b(+)Prph2(Rd2)/J mice. There was a general decrease in mean AF lifetimes with age. CONCLUSIONS Although fluorescence lifetime values differ among mouse strains, we found little variance within the groups. Fundus autofluorescence lifetime imaging in mice may provide additional information for understanding retinal disease processes and may facilitate monitoring of therapeutic effects in preclinical studies.
Resumo:
Triplex-forming oligodeoxynucleotide 15mers, designed to bind in the antiparallel triple-helical binding motif, containing single substitutions (Z) of the four isomeric alphaN(7)-, betaN(7)-, alphaN(9)- and betaN(9)-2-aminopurine (ap)-deoxyribonucleosides were prepared. Their association with double-stranded DNA targets containing all four natural base pairs (X-Y) opposite the aminopurine residues was determined by quantitative DNase I footprint titration in the absence of monovalent metal cations. The corresponding association constants were found to be in a rather narrow range between 1.0 x 10(6) and 1.3 x 10(8) M(-1). The following relative order in Z x X-Y base-triple stabilities was found: Z = alphaN(7)ap: T-A > A-T> C-G approximately G-C; Z = betaN(7)ap: A-T > C-G > G-C > T-A; Z = alphaN(9)ap: A-T = G-C > T-A > C-G; and Z = betaN(9)ap: G-C > A-T > C-G > T-A
Resumo:
Trypanosomes mostly regulate gene expression through post-transcriptional mechanisms, particularly mRNA stability. However, much mRNA degradation is cytoplasmic such that mRNA nuclear export must represent an important level of regulation. Ribosomal RNAs must also be exported from the nucleus and the trypanosome orthologue of NMD3 has been confirmed to be involved in rRNA processing and export, matching its function in other organisms. Surprisingly, we found that TbNMD3 depletion also generates mRNA accumulation of procyclin-associated genes (PAGs), these being co-transcribed by RNA polymerase I with the procyclin surface antigen genes expressed on trypanosome insect forms. By whole transcriptome RNA-seq analysis of TbNMD3-depleted cells we confirm the regulation of the PAG transcripts by TbNMD3 and using reporter constructs reveal that PAG1 regulation is mediated by its 5'UTR. Dissection of the mechanism of regulation demonstrates that it is not dependent upon translational inhibition mediated by TbNMD3 depletion nor enhanced transcription. However, depletion of the nuclear export factors XPO1 or MEX67 recapitulates the effects of TbNMD3 depletion on PAG mRNAs and mRNAs accumulated in the nucleus of TbNMD3-depleted cells. These results invoke a novel RNA regulatory mechanism involving the NMD3-dependent nuclear export of mRNA cargos, suggesting a shared platform for mRNA and rRNA export.
Resumo:
Human immunodeficiency virus 1 (HIV-1) multiplication depends on a cellular protein, cyclophilin A (CyPA), that gets integrated into viral particles. Because CyPA is not required for cell viability, we attempted to block its synthesis in order to inhibit HIV-1 replication. For this purpose, we used antisense U7 small nuclear RNAs (snRNAs) that disturb CyPA pre-mRNA splicing and short interfering RNAs (siRNAs) that target CyPA mRNA for degradation. With dual-specificity U7 snRNAs targeting the 3' and 5' splice sites of CyPA exons 3 or 4, we obtained an efficient skipping of these exons and a strong reduction of CyPA protein. Furthermore, short interfering RNAs targeting two segments of the CyPA coding region strongly reduced CyPA mRNA and protein levels. Upon lentiviral vector-mediated transduction, prolonged antisense effects were obtained for both types of antisense RNAs in the human T-cell line CEM-SS. These transduced CEM-SS cells showed a delayed, and for the siRNAs also reduced, HIV-1 multiplication. Since the two types of antisense RNAs function by different mechanisms, combining the two approaches may result in a synergistic effect.
Resumo:
Tricyclo (tc)-DNA belongs to the class of conformationally constrained DNA analogs that show enhanced binding properties to DNA and RNA. We prepared tc-oligonucleotides up to 17 nt in length, and evaluated their binding efficiency and selectivity towards complementary RNA, their biological stability in serum, their RNase H inducing potential and their antisense activity in a cellular assay. Relative to RNA or 2'-O-Me-phosphorothioate (PS)-RNA, fully modified tc-oligodeoxynucleotides, 10-17 nt in length, show enhanced selectivity and enhanced thermal stability by approximately 1 degrees C/modification in binding to RNA targets. Tricyclodeoxyoligonucleotides are completely stable in heat-deactivated fetal calf serum at 37 degree C. Moreover, tc-DNA-RNA duplexes are not substrates for RNase H. To test for antisense effects in vivo, we used HeLa cell lines stably expressing the human beta-globin gene with two different point mutations in the second intron. These mutations lead to the inclusion of an aberrant exon in beta-globin mRNA. Lipofectamine-mediated delivery of a 17mer tc-oligodeoxynucleotide complementary to the 3'-cryptic splice site results in correction of aberrant splicing already at nanomolar concentrations with up to 100-fold enhanced efficiency relative to a 2'-O-Me-PS-RNA oligonucleotide of the same length and sequence. In contrast to 2'-O-Me-PS-RNA, tc-DNA shows antisense activity even in the absence of lipofectamine, albeit only at much higher oligonucleotide concentrations.
Resumo:
The H19 lncRNA has been implicated in development and growth control and is associated with human genetic disorders and cancer. Acting as a molecular sponge, H19 inhibits microRNA (miRNA) let-7. Here we report that H19 is significantly decreased in muscle of human subjects with type-2 diabetes and insulin resistant rodents. This decrease leads to increased bioavailability of let-7, causing diminished expression of let-7 targets, which is recapitulated in vitro where H19 depletion results in impaired insulin signaling and decreased glucose uptake. Furthermore, acute hyperinsulinemia downregulates H19, a phenomenon that occurs through PI3K/AKT-dependent phosphorylation of the miRNA processing factor KSRP, which promotes biogenesis of let-7 and its mediated H19 destabilization. Our results reveal a previously undescribed double-negative feedback loop between sponge lncRNA and target miRNA that contributes to glucose regulation in muscle cells.
Resumo:
The biological effect of oxidatively damaged RNA, unlike oxidatively damaged DNA, has rarely been investigated, although it poses a threat to any living cell. Here we report on the effect of the commonly known RNA base-lesions 8-oxo-rG, 8-oxo-rA, ε-rC, ε-rA, 5-HO-rC, 5-HO-rU and the RNA abasic site (rAS) on ribosomal translation. To this end we have developed an in vitro translation assay based on the mRNA display methodology. A short synthetic mRNA construct containing the base lesion in a predefined position of the open reading frame was 32P-labeled at the 5′-end and equipped with a puromycin unit at the 3′-end. Upon in vitro translation in rabbit reticulocyte lysates, the encoded peptide chain is transferred to the puromycin unit and the products analyzed by gel electrophoresis. Alternatively, the unlabeled mRNA construct was used and incubated with 35S-methionine to prove peptide elongation of the message. We find that all base-lesions interfere substantially with ribosomal translation. We identified two classes, the first containing modifications at the base coding edge (ε-rC, ε-rA and rAS) which completely abolish peptide synthesis at the site of modification, and the second consisting of 8-oxo-rG, 8-oxo-rA, 5-HO-rC and 5-HO-rU that significantly retard full-length peptide synthesis, leading to some abortive peptides at the site of modification.
Resumo:
Genome-wide DNA remodelling in the ciliate Paramecium is ensured by RNA-mediated trans-nuclear crosstalk between the germline and the somatic genomes during sexual development. The rearrangements include elimination of transposable elements, minisatellites and tens of thousands non-coding elements called internally eliminated sequences (IESs). The trans-nuclear genome comparison process employs a distinct class of germline small RNAs (scnRNAs) that are compared against the parental somatic genome to select the germline-specific subset of scnRNAs that subsequently target DNA elimination in the progeny genome. Only a handful of proteins involved in this process have been identified so far and the mechanism of DNA targeting is unknown. Here we describe chromatin assembly factor-1-like protein (PtCAF-1), which we show is required for the survival of sexual progeny and localizes first in the parental and later in the newly developing macronucleus. Gene silencing shows that PtCAF-1 is required for the elimination of transposable elements and a subset of IESs. PTCAF-1 depletion also impairs the selection of germline-specific scnRNAs during development. We identify specific histone modifications appearing during Paramecium development which are strongly reduced in PTCAF-1 depleted cells. Our results demonstrate the importance of PtCAF-1 for the epigenetic trans-nuclear cross-talk mechanism.
Resumo:
Replication-dependent histone genes are up-regulated during the G1/S phase transition to meet the requirement for histones to package the newly synthesized DNA. In mammalian cells, this increment is achieved by enhanced transcription and 3' end processing. The non-polyadenylated histone mRNA 3' ends are generated by a unique mechanism involving the U7 small ribonucleoprotein (U7 snRNP). By using affinity purification methods to enrich U7 snRNA, we identified FUS/TLS as a novel U7 snRNP interacting protein. Both U7 snRNA and histone transcripts can be precipitated by FUS antibodies predominantly in the S phase of the cell cycle. Moreover, FUS depletion leads to decreased levels of correctly processed histone mRNAs and increased levels of extended transcripts. Interestingly, FUS antibodies also co-immunoprecipitate histone transcriptional activator NPAT and transcriptional repressor hnRNP UL1 in different phases of the cell cycle. We further show that FUS binds to histone genes in S phase, promotes the recruitment of RNA polymerase II and is important for the activity of histone gene promoters. Thus, FUS may serve as a linking factor that positively regulates histone gene transcription and 3' end processing by interacting with the U7 snRNP and other factors involved in replication-dependent histone gene expression.