935 resultados para Induced resistance.
Resumo:
Breast cancer is the most frequently diagnosed cancer in women, accounting for over 25% of cancer diagnoses and 13% of cancer-related deaths in Canadian women. There are many types of therapies for treatment or management of breast cancer, with chemotherapy being one of the most widely used. Taxol (paclitaxel) is one of the most extensively used chemotherapeutic agents for treating cancers of the breast and numerous other sites. Taxol stabilizes microtubules during mitosis, causing the cell cycle to arrest until eventually the cell undergoes apoptosis. Although Taxol has had significant benefits in many patients, response rates range from only 25-69%, and over half of Taxol-treated patients eventually acquire resistance to the drug. Drug resistance remains one of the greatest barriers to effective cancer treatment, yet little has been discerned regarding resistance to Taxol, despite its widespread clinical use. Kinases are known to be heavily involved in cancer development and progression, and several kinases have been linked to resistance of Taxol and other chemotherapeutic agents. However, a systematic screen for kinases regulating Taxol resistance is lacking. Thus, in this study, a set of kinome-wide screens was conducted to interrogate the involvement of kinases in the Taxol response. Positive-selection and negative-selection CRISPR-Cas9 screens were conducted, whereby a pooled library of 5070 sgRNAs targeted 507 kinase-encoding genes in MCF-7 breast cancer cells that were Taxol-sensitive (WT) or Taxol-resistant (TxR) which were then treated with Taxol. Next generation sequencing (NGS) was performed on cells that survived Taxol treatment, allowing identification and quantitation of sgRNAs. STK38, Blk, FASTK and Nek3 stand out as potentially critical kinases for Taxol-induced apoptosis to occur. Furthermore, kinases CDKL1 and FRK may have a role in Taxol resistance. Further validation of these candidate kinases will provide novel pre-clinical data about potential predictive biomarkers or therapeutic targets for breast cancer patients in the future.
Resumo:
Resistance to radiotherapy due to insufficient cancer cell death is a significant cause of treatment failure in non-small cell lung cancer (NSCLC). The endogenous caspase-8 inhibitor, FLIP, is a critical regulator of cell death that is frequently overexpressed in NSCLC and is an established inhibitor of apoptotic cell death induced via the extrinsic death receptor pathway. Apoptosis induced by ionizing radiation (IR) has been considered to be mediated predominantly via the intrinsic apoptotic pathway; however, we found that IR-induced apoptosis was significantly attenuated in NSCLC cells when caspase-8 was depleted using RNA interference (RNAi), suggesting involvement of the extrinsic apoptosis pathway. Moreover, overexpression of wild-type FLIP, but not a mutant form that cannot bind the critical death receptor adaptor protein FADD, also attenuated IR-induced apoptosis, confirming the importance of the extrinsic apoptotic pathway as a determinant of response to IR in NSCLC. Importantly, when FLIP protein levels were down-regulated by RNAi, IR-induced cell death was significantly enhanced. The clinically relevant histone deacetylase (HDAC) inhibitors vorinostat and entinostat were subsequently found to sensitize a subset of NSCLC cell lines to IR in a manner that was dependent on their ability to suppress FLIP expression and promote activation of caspase-8. Entinostat also enhanced the anti-tumor activity of IR in vivo. Therefore, FLIP down-regulation induced by HDAC inhibitors is a potential clinical strategy to radio-sensitize NSCLC and thereby improve response to radiotherapy. Overall, this study provides the first evidence that pharmacological inhibition of FLIP may improve response of NCSLC to IR.
Resumo:
During their life cycle, plants are typically confronted by simultaneous biotic and abiotic stresses. Low inorganic phosphate (Pi) is one of the most common nutrient deficiencies limiting plant growth in natural and agricultural ecosystems, while insect herbivory accounts for major losses in plant productivity and impacts ecological and evolutionary changes in plant populations. Here, we report that plants experiencing Pi deficiency induce the jasmonic acid (JA) pathway and enhance their defense against insect herbivory. Pi-deficient Arabidopsis (Arabidopsis thaliana) showed enhanced synthesis of JA and the bioactive conjugate JA-isoleucine, as well as activation of the JA signaling pathway, in both shoots and roots of wild-type plants and in shoots of the Pi-deficient mutant pho1 The kinetics of the induction of the JA signaling pathway by Pi deficiency was influenced by PHOSPHATE STARVATION RESPONSE1, the main transcription factor regulating the expression of Pi starvation-induced genes. Phenotypes of the pho1 mutant typically associated with Pi deficiency, such as high shoot anthocyanin levels and poor shoot growth, were significantly attenuated by blocking the JA biosynthesis or signaling pathway. Wounded pho1 leaves hyperaccumulated JA/JA-isoleucine in comparison with the wild type. The pho1 mutant also showed an increased resistance against the generalist herbivore Spodoptera littoralis that was attenuated in JA biosynthesis and signaling mutants. Pi deficiency also triggered increased resistance to S. littoralis in wild-type Arabidopsis as well as tomato (Solanum lycopersicum) and Nicotiana benthamiana, revealing that the link between Pi deficiency and enhanced herbivory resistance is conserved in a diversity of plants, including crops.
Resumo:
Stainless steels were developed in the early 20th century and are used where both the mechanical properties of steels and corrosion resistance are required. There is continuous research to allow stainless steel components to be produced in a more economical way and be used in more harsh environments. A necessary component in this effort is to correlate the service performance with the production processes. The central theme of this thesis is the mechanical grinding process. This is commonly used for producing stainless steel components, and results in varied surface properties that will strongly affect their service life. The influence of grinding parameters including abrasive grit size, machine power and grinding lubricant were studied for 304L austenitic stainless steel (Paper II) and 2304 duplex stainless steel (Paper I). Surface integrity was proved to vary significantly with different grinding parameters. Abrasive grit size was found to have the largest influence. Surface defects (deep grooves, smearing, adhesive/cold welding chips and indentations), a highly deformed surface layer up to a few microns in thickness and the generation of high level tensile residual stresses in the surface layer along the grinding direction were observed as the main types of damage when grinding stainless steels. A large degree of residual stress anisotropy is interpreted as being due to mechanical effects dominating over thermal effects. The effect of grinding on stress corrosion cracking behaviour of 304L austenitic stainless steel in a chloride environment was also investigated (Paper III). Depending on the surface conditions, the actual loading by four-point bend was found to deviate from the calculated value using the formula according to ASTM G39 by different amounts. Grinding-induced surface tensile residual stress was suggested as the main factor to cause micro-cracks initiation on the ground surfaces. Grinding along the loading direction was proved to increase the susceptibility to chloride-induced SCC, while grinding perpendicular to the loading direction improved SCC resistance. The knowledge obtained from this work can provide a reference for choosing appropriate grinding parameters when fabricating stainless steel components; and can also be used to help understanding the failure mechanism of ground stainless steel components during service.
Resumo:
Fungi, including the yeast Saccharomyces cerevisiae, lack ferritin and use vacuoles as iron storage organelles. This work explored how plant ferritin expression influenced baker's yeast iron metabolism. Soybean seed ferritin H1 (SFerH1) and SFerH2 genes were cloned and expressed in yeast cells. Both soybean ferritins assembled as multimeric complexes, which bound yeast intracellular iron in vivo and, consequently, induced the activation of the genes expressed during iron scarcity. Soybean ferritin protected yeast cells that lacked the Ccc1 vacuolar iron detoxification transporter from toxic iron levels by reducing cellular oxidation, thus allowing growth at high iron concentrations. Interestingly, when simultaneously expressed in ccc1Δ cells, SFerH1 and SFerH2 assembled as heteropolymers, which further increased iron resistance and reduced the oxidative stress produced by excess iron compared to ferritin homopolymer complexes. Finally, soybean ferritin expression led to increased iron accumulation in both wild-type and ccc1Δ yeast cells at certain environmental iron concentrations.
Resumo:
Bothrops jararacussu myotoxin I (BthTx-I; Lys 49) and II (BthTX-II; Asp 49) were purified by ion-exchange chromatography and reverse phase HPLC. In this work we used the isolated perfused rat kidney method to evaluate the renal effects of B. jararacussu myotoxins I (Lys49 PLA(2)) and II (Asp49 PLA(2)) and their possible blockage by indomethacin. BthTX-1 (5 mu g/ml) and BthTX-II (5 mu g/ml) increased perfusion pressure (PP; ct(120) = 110.28+/-3.70 mmHg; BthTX I = 171.28+/-6.30* mmHg; BthTX II = 175.50+/-7.20* mmHg), renal vascular resistance (RVR; ct(120) = 5.49+/-0.54 mmHg/ml.g(-1) min(-1); BthTX I = 8.62+/-0.37* mmHg/ml g(-1) min(-1); BthTX II=8.9+/-0.36* mmHg/ml g(-1) min(-1)), urinary flow (UF; ct(120)= 0.14+/-0.01 ml g(-1) min(-1); BthTX I=0.32+/-0.05* ml g(-1) min(-1); BthTX II=0.37+/-0.01* ml g(-1) min(-1)) and glomerular filtration rate (GFR; ct(120)=0.72+/-0.10 ml g(-1) min(-1); BthTX I=0.85+/-0.13* ml g(-1) min(-1); BthTX II=1.22+/-0.28* ml g(-1) min(-1)). In contrast decreased the percent of sodium tubular transport (%TNa+; ct(120)=79,76+/-0.56; BthTX I=62.23+/-4.12*; BthTX II=70.96+/-2.93*) and percent of potassium tubular transport (%TK+;ct(120)=66.80+/-3.69; BthTX I=55.76+/-5.57*; BthTX II=50.86+/-6.16*). Indomethacin antagonized the vascular, glomerular and tubular effects promoted by BthTX I and it's partially blocked the effects of BthTX II. In this work also evaluated the antibacterial effects of BthTx-I and BthTx-II against Xanthomonas axonopodis. pv. passiflorae (Gram-negative bacteria) and we observed that both PLA2 showed antibacterial activity. Also we observed that proteins Also we observed that proteins chemically modified with 4-bromophenacyl bromide (rho-BPB) decrease significantly the antibacterial effect of both PLA(2). In conclusion, BthTx I and BthTX II caused renal alteration and presented activity antimicrobial. The indomethacin was able to antagonize totally the renal effects induced by BthTx I and partially the effects promoted by BthTx II, suggesting involvement of inflammatory mediators in the renal effects caused by myotoxins. In the other hand, other effects could be independently of the enzymatic activity of the BthTX II and the C-terminal domain could be involved in both effects promoted for PLA(2). (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Tityus serrulatus, popularly known as yellow scorpion, is one of the most studied scorpion species in South America and its venom has supplied some highly active molecules. The effects of T. serrulatus venom upon the renal physiology in human showed increased renal parameters, urea and creatinine. However, in perfused rat kidney the effects were not tested until now. Isolated kidneys from Wistar rats, weighing 240-280 g, were perfused with Krebs-Henseleit solution containing 6% (g weight) of previously dialysed bovine serum albumin. The effects of T. serrulatus venom were studied on the perfusion pressure (PP), renal vascular resistance (RVR), urinary flow (UF), glomerular filtration rate (GFR), sodium tubular transport (%TNa+), potassium tubular transport (%TK+) and chloride tubular transport (%TCl-). Tityus serrulatus venom (TsV; 10 mu g/mL) was added to the system 30 min after the beginning of each experiment (n = 6). This 30 min period was used as an internal control. The mesenteric bed was perfused with Krebs solution kept warm at 37 T by a constant flow (4 mL/min), while the variable perfusion pressure was measured by means of a pressure transducer. The direct vascular effects of TsV (10 mu g/mL/min; n=6), infused at a constant rate (0.1 mL/min), were examined and compared to the infusion of the vehicle alone at the same rate. TsV increased PP (PP30'= 127.8 +/- 0.69 vs PP60' = 154.2 +/- 14 mmHg*, *p < 0.05) and RVR (RVR30' = 6.29 +/- 0.25 vs RVR60' = 8.03 +/- 0.82 mmHg/mL g(-1) min(-1)*, *p < 0.05), decreased GFR (GFR(30') =0.58 +/- 0.02 vs GFR(60') = 0.46 +/- 0.01 mL g(-1) min(-1)*, *p < 0.05) and UF (UF30' = 0.135 +/- 0.001 vs UF60' = 0.114 +/- 0.003 mL g(-1)min(-1)*, *p < 0.05). Tubular transport was not affected during the whole experimental period (120 min). on the other hand, the infusion of TsV (10 mu g/mL/min) increased the basal perfusion pressure of isolated arteriolar mesenteric bed (basal pressure: 74.17 +/- 3.42 vs TsV 151.8 +/- 17.82 mmHg*, *p < 0.05). TsV affects renal haemodynamics probably by a direct vasoconstrictor action leading to decreased renal flow. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Renal changes determined by Lys49 myotoxin I (BmTx I), isolated from Bothrops moojeni are well known. The scope of the present study was to investigate the possible mechanisms involved in the production of these effects by using indomethacin (10 mu g/mL), a non-selective inhibitor of cyclooxygenase, and tezosentan (10 mu g/mL), an endothelin antagonist. By means of the method of mesenteric vascular bed, it has been observed that B. moojeni myotoxin (5 mu g/mL) affects neither basal perfusion pressure nor phenylephrine-preconstricted vessels. This fact suggests that the increase in renal perfusion pressure and in renal vascular resistance did not occur by a direct effect on renal vasculature. Isolated kidneys from Wistar rats, weighing 240-280 g, were perfused with Krebs-Henseleit solution. The infusion of BmTx-I increased perfusion pressure, renal vascular resistance, urinary flow and glomerular filtration rate. Sodium, potassium and chloride tubular transport was reduced after addition of BmTx-I. Indomethacin blocked the effects induced by BmTx-I on perfusion pressure and renal vascular resistance, however, it did not revert the effect on urinary flow and sodium, potassium and chloride tubular transport. The alterations of glomerular filtration rate were inhibited only at 90 min of perfusion. The partial blockade exerted by indomethacin treatment showed that prostaglandins could have been important mediators of BmTx-I renal effects, but the participation of other substances cannot be excluded.The blockage of all renal alterations observed after tezosentan treatment support the hypothesis that endothelin is the major substance involved in the renal pathophysiologic alterations promoted by the Lys49 PLA(2) myotoxin I, isolated from B. moojeni. In conclusion, the rather intense renal effects promoted by B. moojeni myotoxin-I were probably caused by the release of renal endothelin, interfering with the renal parameters studied. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Clostridium difficile-associated disease causes diarrhea to fulminant colitis and death. We investigated the role of phospholipase A(2) (PLA(2)) inhibitors, aristolochic acid (AA), bromophenacyl bromide BPB and quinacrine (QUIN) on the C. difficile toxin A-induced disruption of epithelial integrity, histologic inflammatory damage and intestinal secretion. Toxin A caused severe hemorrhagic and inflammatory fluid secretion at 6-8 h in rabbit ileal segments, an effect that was significantly inhibited by QUIN (71%, P < 0.01), AA (87%, P < 0.0001) or by BPB (51%, P < 0.01). The secretory effect of toxin A was also inhibited in segments adjacent to those with AA (89%, P < 0.01). Furthermore, QUIN or AA substantially reduced the histologic damage seen after 6-8 h in rabbit ileal segments. The cyclooxygenase inhibitor, indomethacin, also significantly inhibited (96%; n = 6) the secretory effects of toxin A in ligated rabbit intestinal segments. The destruction by toxin A of F-actin at the light junctions of T-84 cell monolayers was not inhibited by AA or BPB. AA or QUIN had no effect on the T-84 cell tissue resistance reduction over 8-24 h after toxin A exposure. All the inhibitors were shown to be effective in the doses administered direct in ileal loops to inhibit PLA(2) activity. The data suggest that PLA(2) is involved in the major pathway of toxin A-induced histologic inflammatory damage and hemorrhagic fluid secretion. Cop. right (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Toxoplasma gondii is the causative protozoan agent of toxoplasmosis, which is a common infection that is widely distributed worldwide. Studies revealed stronger clonal strains in North America and Europe and genetic diversity in South American strains. Our study aimed to differentiate the pathogenicity and sulfadiazine resistance of three T. gondii isolates obtained from livestock intended for human consumption. The cytopathic effects of the T. gondii isolates were evaluated. The pathogenicity was determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using a CS3 marker and in a rodent model in vivo. Phenotypic sulfadiazine resistance was measured using a kinetic curve of drug activity in Swiss mice. IgM and IgG were measured by ELISA, and the dihydropteroate synthase (DHPS) gene sequence was analysed. The cytopathic effects and the PCR-RFLP profiles from chickens indicated a different infection source. The Ck3 isolate displayed more cytopathic effects in vitro than the Ck2 and ME49 strains. Additionally, the Ck2 isolate induced a differential humoral immune response compared to ME49. The Ck3 and Pg1 isolates, but not the Ck2 isolate, showed sulfadiazine resistance in the sensitivity assay. We did not find any DHPS gene polymorphisms in the mouse samples. These atypical pathogenicity and sulfadiazine resistance profiles were not previously reported and served as a warning to local health authorities.
Resumo:
This study determined roller massager (RM) effectiveness on ankle plantar flexors’ recovery after exercise-induced muscle damage (EIMD) stimulus. Two experiments were conducted. The first experiment (n=10) examined functional [i.e., ankle plantar flexion maximal voluntary isometric contraction (MVIC) and submaximal (30% of MVIC) sustained force; ankle dorsiflexion maximal range of motion and resistance to stretch; and pain pressure threshold] and morphological [medial gastrocnemius (MG) cross sectional area, thickness, fascicle length, and fascicle angle] variables, before and immediately, 1h, 24h, 48h, and 72 after EIMD. In the second experiment (n=10), changes in MG deoxyhemoglobin concentration kinetics (velocity and amplitude) during a submaximal sustained force test were observed before and 48h after EIMD. Participants performed both experiments twice, with and without (NRM) the application of a RM (6 × 45 seconds with 20 seconds rest between sets). RM intervention did not alter plantar flexors’ strength and flexibility impairment after EIMD, as well the MG morphology and oxygenation kinetics (p>0.05). On the other hand, a strong tendency for an acute (within 1 hour) change of ipsilateral (post-effects: RM=+19%, NRM=-5%, p=0.032) and contralateral (p=0.095) MG pain pressure threshold was observed. In conclusion, the present results suggest that a roller massager has no effect on muscular performance, morphology, and oxygenation recovery after EIMD, except for muscle pain pressure threshold (i.e., a soreness). Thus, RM may have potential application in recovery for people with increased muscle soreness, if performed immediately before a physical task.
Resumo:
The increasingly strict regulations on greenhouse gas emissions make the fuel economy a pressing factor for automotive manufacturers. Lightweighting and engine downsizing are two strategies pursued to achieve the target. In this context, materials play a key role since these limit the engine efficiency and components weight, due to their acceptable thermo-mechanical loads. Piston is one of the most stressed engine components and it is traditionally made of Al alloys, whose weakness is to maintain adequate mechanical properties at high temperature due to overaging and softening. The enhancement in strength-to-weight ratio at high temperature of Al alloys had been investigated through two approaches: increase of strength at high temperature or reduction of the alloy density. Several conventional and high performance Al-Si and Al-Cu alloys have been characterized from a microstructural and mechanical point of view, investigating the effects of chemical composition, addition of transition elements and heat treatment optimization, in the specific temperature range for pistons operations. Among the Al-Cu alloys, the research outlines the potentialities of two innovative Al-Cu-Li(-Ag) alloys, typically adopted for structural aerospace components. Moreover, due to the increased probability of abnormal combustions in high performance spark-ignition engines, the second part of the dissertation deals with the study of knocking damages on Al pistons. Thanks to the cooperation with Ferrari S.p.A. and Fluid Machinery Research Group - Unibo, several bench tests have been carried out under controlled knocking conditions. Knocking damage mechanisms were investigated through failure analyses techniques, starting from visual analysis up to detailed SEM investigations. These activities allowed to relate piston knocking damage to engine parameters, with the final aim to develop an on-board knocking controller able to increase engine efficiency, without compromising engine functionality. Finally, attempts have been made to quantify the knock-induced damages, to provide a numerical relation with engine working conditions.
Resumo:
Besides their own adaptation strategies, plants might exploit microbial symbionts for overcoming both biotic and abiotic stresses and increase fitness. The current scenario of rapid climate change is demanding more sustainable agricultural management practices. The application of microbe-based products as a valid alternative to synthetic pesticides and fertilizers and their use to overcome stresses exacerbated by climate change, have been reviewed in the first part of this thesis. Berry fruits are widely cultivated and appreciated for their aromatic and nutraceutical properties. This thesis is focused on the role of plant and fruit microbiome on strawberry and raspberry growth, resistance, fruit quality and aroma. A taxonomical and functional description of the microbiome of different organs of three strawberry genotypes was performed both by traditional cultural dependent method and Next Generation Sequencing technique, highlighting a significant role of plant organs and genotype in determining the composition of microbial communities. Additionally, a selection of bacteria native of strawberry plants were isolated and screened for their plant growth promoting abilities and tested under the biotic stress of Xanthomonas fragariae infection and the abiotic stress of induced salinity. The monitoring of biometric parameters allowed the selection of a more restricted panel of bacterial strains, whose beneficial potential was tested in coordinated inoculations, or singularly. Raspberry plant was used for investigating the effect of cultivation method in determining fruit microbiome, and its consequent influence of berry quality and aroma. Interestingly, the cultivation method strongly influenced fruit nutraceutical traits, aroma and epiphytic bacterial biocoenosis. The involvement of the bacterial microbiota in fruit aroma determination was evaluated by performing GC–MS analysis of VOCs occurring in control, sterile and artificially reinoculated berries and by characterizing control and reinoculated berry microbiome. Differently treated berries showed significantly different aromatic profile, confirming the role of bacteria in fruit aroma development.
Resumo:
Torpor is a successful survival strategy displayed by several mammalian species to cope with harsh environmental conditions. A complex interplay of ambient, genetic and circadian stimuli acts centrally to induce a severe suppression of metabolic rate, usually followed by an apparently undefended reduction of body temperature. Some animals, such as marmots, are able to maintain this physiological state for months (hibernation), during which torpor bouts are periodically interrupted by short interbouts of normothermia (arousals). Interestingly, torpor adaptations have been shown to be associated with a large resistance towards stressors, such as radiation: indeed, if irradiated during torpor, hibernators can tolerate higher doses of radiation, showing an increased survival rate. New insights for radiotherapy and long-term space exploration could arise from the induction of torpor in non-hibernators, like humans. The present research project is centered on synthetic torpor (ST), a hypometabolic/hypothermic condition induced in a non-hibernator, the rat, through the pharmacological inhibition of the Raphe Pallidus, a key brainstem area controlling thermogenic effectors. By exploiting this procedure, this thesis aimed at: i) providing a multiorgan description of the functional cellular adaptations to ST; ii) exploring the possibility, and the underpinning molecular mechanisms, of enhanced radioresistance induced by ST. To achieve these aims, transcriptional and histological analysis have been performed in multiple organs of synthetic torpid rats and normothermic rats, either exposed or not exposed to 3 Gy total body of X-rays. The results showed that: i) similarly to natural torpor, ST induction leads to the activation of survival and stress resistance responses, which allow the organs to successfully adapt to the new homeostasis; ii) ST provides tissue protection against radiation damage, probably mainly through the cellular adaptations constitutively induced by ST, even though the triggering of specific responses when the animal is irradiated during hypothermia might play a role.
Resumo:
Snakebite is a neglected disease and serious health problem in Brazil, with most bites being caused by snakes of the genus Bothrops. Although serum therapy is the primary treatment for systemic envenomation, it is generally ineffective in neutralizing the local effects of these venoms. In this work, we examined the ability of 7,8,3'-trihydroxy-4'-methoxyisoflavone (TM), an isoflavone from Dipteryx alata, to neutralize the neurotoxicity (in mouse phrenic nerve-diaphragm preparations) and myotoxicity (assessed by light microscopy) of Bothrops jararacussu snake venom in vitro. The toxicity of TM was assessed using the Salmonella microsome assay (Ames test). Incubation with TM alone (200 μg/mL) did not alter the muscle twitch tension whereas incubation with venom (40 μg/mL) caused irreversible paralysis. Preincubation of TM (200 μg/mL) with venom attenuated the venom-induced neuromuscular blockade by 84% ± 5% (mean ± SEM; n = 4). The neuromuscular blockade caused by bothropstoxin-I (BthTX-I), the major myotoxic PLA2 of this venom, was also attenuated by TM. Histological analysis of diaphragm muscle incubated with TM showed that most fibers were preserved (only 9.2% ± 1.7% were damaged; n = 4) compared to venom alone (50.3% ± 5.4% of fibers damaged; n = 3), and preincubation of TM with venom significantly attenuated the venom-induced damage (only 17% ± 3.4% of fibers damaged; n = 3; p < 0.05 compared to venom alone). TM showed no mutagenicity in the Ames test using Salmonella strains TA98 and TA97a with (+S9) and without (-S9) metabolic activation. These findings indicate that TM is a potentially useful compound for antagonizing the neuromuscular effects (neurotoxicity and myotoxicity) of B. jararacussu venom.