929 resultados para In-plane Shear Equations
Resumo:
Studies indicate that a variation in the degree of crystallinity of the components of a polymer blend influences the mechanical properties. This variation can be obtained by subjecting the blend to heat treatments that lead to changes in the spherulitic structure. The aim of this work is to analyze the influence of different heat treatments on the variation of the degree of crystallinity and to establish a relationship between this variation and the mechanical behavior of poly(methyl methacrylate)/poly(ethylene terephthalate) recycled (PMMA / PETrec) with and without the use of compatibilizer agent poly(methyl methacrylate-al-glycidyl methacrylate-al-ethyl acrylate) (MMAGMA- EA). All compositions were subjected to two heat treatments. T1 heat treatment the samples were treated at 130 ° C for 30 minutes and cooled in air. In T2, the samples were treated at 230 ° C for 5 minutes and cooled to approximately -10 ° C. The variation of the degree of crystallinity was determined by the proportional relationship between crystallinity and density, with the density measured by pycnometry. The mechanical behavior was verified by tensile tests with and without the presence of notches and pre-cracks, and by method of fracture toughness in plane strain (KIC). We used the scanning electron microscopy (SEM) to analyze the fracture surface of the samples. The compositions subjected to heat treatment T1, in general, showed an increase in the degree of crystallinity in tensile strength and a tendency to decrease in toughness, while compositions undergoing treatment T2 showed that the opposite behavior. Therefore, this work showed that heat treatment can give a polymer blend further diversity of its properties, this being caused by changes in the crystal structure
Resumo:
The change in the carbonaceous skeleton of nanoporous carbons during their activation has received limited attention, unlike its counterpart process in the presence of an inert atmosphere. Here we adopt a multi-method approach to elucidate this change in a poly(furfuryl alcohol)-derived carbon activated using cyclic application of oxygen saturation at 250 °C before its removal (with carbon) at 800 °C in argon. The methods used include helium pycnometry, synchrotron-based X-ray diffraction (XRD) and associated radial distribution function (RDF) analysis, transmission electron microscopy (TEM) and, uniquely, electron energy-loss spectroscopy spectrum-imaging (EELS-SI), electron nanodiffraction and fluctuation electron microscopy (FEM). Helium pycnometry indicates the solid skeleton of the carbon densifies during activation from 78% to 93% of graphite. RDF analysis, EELS-SI, and FEM all suggest this densification comes through an in-plane growth of sp2 carbon out to the medium range without commensurate increase in order normal to the plane. This process could be termed ‘graphenization’. The exact way in which this process occurs is not clear, but TEM images of the carbon before and after activation suggest it may come through removal of the more reactive carbon, breaking constraining cross-links and creating space that allows the remaining carbon material to migrate in an annealing-like process.
Resumo:
We report a multi-wavelength Raman spectroscopy study of the structural changes along the thermal annealing pathway of a poly(furfuryl alcohol) (PFA) derived nanoporous carbon (NPC). The Raman spectra were deconvoluted utilizing G, D, D′, A and TPA bands. The appropriateness of these deconvolutions was confirmed via recovery of the correct dispersive behaviours of these bands. It is proposed that the ID/IG ratio is composed of two parts: one associated with the extent of graphitic crystallites (the Tuinstra–Koenig relationship), and a second related to the inter-defect distance. This model was used to successfully determine the variation of the in-plane size and intra-plane defect density along the annealing pathway. It is proposed that the NPC skeleton evolves along the annealing pathway in two stages: below 1600 °C it was dominated by a reduction of in-plane defects with a minor crystallite growth, and above this temperature growth of the crystallites accelerates as the in-plane defect density approaches zero. A significant amount of transpolyacetylene (TPA)-like structures was found to be remaining even at 2400 °C. These may be responsible for resistance to further graphitization of the PFA-based carbon at higher temperatures.
Resumo:
This thesis presents a set of novel methods to biaxially package planar structures by folding and wrapping. The structure is divided into strips connected by folds that can slip during wrapping to accommodate material thickness. These packaging schemes are highly efficient, with theoretical packaging efficiencies approaching 100%. Packaging tests on meter-scale physical models have demonstrated packaging efficiencies of up to 83%. These methods avoid permanent deformation of the structure, allowing an initially flat structure to be deployed to a flat state.
Also presented are structural architectures and deployment schemes that are compatible with these packaging methods. These structural architectures use either in-plane pretension -- suitable for membrane structures -- or out-of-plane bending stiffness to resist loading. Physical models are constructed to realize these structural architectures. The deployment of these types of structures is shown to be controllable and repeatable by conducting experiments on lab-scale models.
These packaging methods, structural architectures, and deployment schemes are applicable to a variety of spacecraft structures such as solar power arrays, solar sails, antenna arrays, and drag sails; they have the potential to enable larger variants of these structures while reducing the packaging volume required. In this thesis, these methods are applied to the preliminary structural design of a space solar power satellite. This deployable spacecraft, measuring 60 m x 60 m, can be packaged into a cylinder measuring 1.5 m in height and 1 m in diameter. It can be deployed to a flat configuration, where it acts as a stiff lightweight support framework for multifunctional tiles that collect sunlight, generate electric power, and transmit it to a ground station on Earth.
Resumo:
This work presents the development of an in-plane vertical micro-coaxial probe using bulk micromachining technique for high frequency material characterization. The coaxial probe was fabricated in a silicon substrate by standard photolithography and a deep reactive ion etching (DRIE) technique. The through-hole structure in the form of a coaxial probe was etched and metalized with a diluted silver paste. A co-planar waveguide configuration was integrated with the design to characterize the probe. The electrical and RF characteristics of the coaxial probe were determined by simulating the probe design in Ansoft’s High Frequency Structure Simulator (HFSS). The reflection coefficient and transducer gain performance of the probe was measured up to 65 GHz using a vector network analyzer (VNA). The probe demonstrated excellent results over a wide frequency band, indicating its ability to integrate with millimeter wave packaging systems as well as characterize unknown materials at high frequencies. The probe was then placed in contact with 3 materials where their unknown permittivities were determined. To accomplish this, the coaxial probe was placed in contact with the material under test and electromagnetic waves were directed to the surface using the VNA, where its reflection coefficient was then determined over a wide frequency band from dc-to -65GHz. Next, the permittivity of each material was deduced from its measured reflection coefficients using a cross ratio invariance coding technique. The permittivity results obtained when measuring the reflection coefficient data were compared to simulated permittivity results and agreed well. These results validate the use of the micro-coaxial probe to characterize the permittivity of unknown materials at high frequencies up to 65GHz.
Resumo:
Metal oxide thin films are important for modern electronic devices ranging from thin film transistors to photovoltaics and functional optical coatings. Solution processed techniques allow for thin films to be rapidly deposited over a range of surfaces without the extensive processing of comparative vapour or physical deposition methods. The production of thin films of vanadium oxide prepared through dip-coating was developed enabling a greater understanding of the thin film formation. Mechanisms of depositing improved large area uniform coverage on a number of technologically relevant substrates were examined. The fundamental mechanism for polymer-assisted deposition in improving thin film surface smoothness and long range order has been delivered. Different methods were employed for adapting the alkoxide based dip-coating technique to produce a variety of amorphous and crystalline vanadium oxide based thin films. Using a wide range of material, spectroscopic and optical measurement techniques the morphology, structure and optoelectronic properties of the thin films were studied. The formation of pinholes on the surface of the thin films, due to dewetting and spinodal effects, was inhibited using the polymer assisted deposition technique. Uniform thin films with sub 50 nm thicknesses were deposited on a variety of substrates controlled through alterations to the solvent-alkoxide dilution ratios and employing polymer assisted deposition techniques. The effects of polymer assisted deposition altered the crystallized VO thin films from a granular surface structure to a polycrystalline structure composed of high density small in-plane grains. The formation of transparent VO based thin film through Si and Na substrate mediated diffusion highlighted new methods for material formation and doping.
Resumo:
This work reports the development of integrated Co rich CoPtP hard magnetic material for MEMS applications such as Electromagnetic Vibration Energy Harvesting. We report a new method of electrodeposition compared to the conventional DC plating, involving a combination of forward and reverse pulses for optimized deposition of Co rich CoPtP hard magnetic material. This results in significant improvements in the microstructure of the developed films as the pulse reverse plated films are smooth, stress free and uniform. Such improvements in the structural properties are reflected in the hard magnetic properties of the material as well. The intrinsic coercivities of the pulse reverse deposited film are more than 6 times higher for both in-plane and out-of-plane measurement directions and the squareness of the hysteresis loops also improve due to the similar reasons.
Resumo:
Recent research in the field of organic spintronics highlighted the peculiar spin-dependent properties of the interface formed by an organic semiconductor (OSC) chemisorbed over a 3d ferromagnetic metal, also known as spinterface. The hybridization between the molecular and metallic orbitals, typically π orbitals of the molecule and the d orbitals of the ferromagnet, give rise to spin dependent properties that were not expected by considering the single components of interfaces, as for example the appearance of a magnetic moment on non-magnetic molecules or changes in the magnetic behavior of the ferromagnet. From a technological viewpoint these aspects provide novel engineering schemes for spin memory and for spintronics devices, featuring unexpected interfacial magnetoresistance, spin-filtering effects and even modulated magnetic anisotropy. Applications of these concepts to devices require nevertheless to transfer the spinterface effects from an ideal interface to room temperature operating thin films. In this view, my work presents for the first time how spinterface effects can be obtained even at room temperature on polycrystalline ferromagnetic Co thin films interfaced with organic molecules. The considered molecules were commercial and widely used in the field of organic electronics: Fullerene (C60), Gallium Quinoline (Gaq3) and Sexithiophene (T6). An increase of coercivity, up to 100% at room temperature, has been obtained on the Co ultra-thin films by the deposition of an organic molecule. This effect is accompanied by a change of in-plane anisotropy that is molecule-dependent. Moreover the Spinterface effect is not limited to the interfacial layer, but it extends throughout the whole thickness of the ferromagnetic layer, posing new questions on the nature of the 3d metal-molecule interaction.
Resumo:
In a context of technological innovation, the aim of this thesis is to develop a technology that has gained interest in both scientific and industrial realms. This technology serves as a viable alternative to outdated and energy-consuming industrial systems. Electro-adhesive devices (EADs) leverage electrostatic forces for grasping objects or adhering to surfaces. The advantage of employing electrostatics lies in its adaptability to various materials without compromising the structure or chemistry of the object or surface. These benefits have led the industry to explore this technology as a replacement for costly vacuum systems and suction cups currently used for handling most products. Furthermore, the broad applicability of this technology extends to extreme environments, such as space with ultra-high vacuum conditions. Unfortunately, research in this area has yet to yield practical results for industrially effective gripper prototyping. This is primarily due to the inherent complexity of electro-adhesive technology, which operates on basic capacitive principles that does not find satisfying physical descriptions. This thesis aims to address these challenges through a series of studies, starting with the manufacturing process and testing of an EAD that has become the standard in our laboratory. It then delves into material and electrode geometry studies to enhance system performance, ultimately presenting potential industrial applications of the technology. All the presented results are encouraging, as they have yielded shear force values three times higher than those previously reported in the literature. The various applications have demonstrated the significant effectiveness of EADs as brakes or, more broadly, in exerting shear forces. This opens up the possibility of utilizing cutting-edge technologies to push the boundaries of technology to the fullest.
Resumo:
We consider the numerical treatment of second kind integral equations on the real line of the form ∅(s) = ∫_(-∞)^(+∞)▒〖κ(s-t)z(t)ϕ(t)dt,s=R〗 (abbreviated ϕ= ψ+K_z ϕ) in which K ϵ L_1 (R), z ϵ L_∞ (R) and ψ ϵ BC(R), the space of bounded continuous functions on R, are assumed known and ϕ ϵ BC(R) is to be determined. We first derive sharp error estimates for the finite section approximation (reducing the range of integration to [-A, A]) via bounds on (1-K_z )^(-1)as an operator on spaces of weighted continuous functions. Numerical solution by a simple discrete collocation method on a uniform grid on R is then analysed: in the case when z is compactly supported this leads to a coefficient matrix which allows a rapid matrix-vector multiply via the FFT. To utilise this possibility we propose a modified two-grid iteration, a feature of which is that the coarse grid matrix is approximated by a banded matrix, and analyse convergence and computational cost. In cases where z is not compactly supported a combined finite section and two-grid algorithm can be applied and we extend the analysis to this case. As an application we consider acoustic scattering in the half-plane with a Robin or impedance boundary condition which we formulate as a boundary integral equation of the class studied. Our final result is that if z (related to the boundary impedance in the application) takes values in an appropriate compact subset Q of the complex plane, then the difference between ϕ(s)and its finite section approximation computed numerically using the iterative scheme proposed is ≤C_1 [kh log〖(1⁄kh)+(1-Θ)^((-1)⁄2) (kA)^((-1)⁄2) 〗 ] in the interval [-ΘA,ΘA](Θ<1) for kh sufficiently small, where k is the wavenumber and h the grid spacing. Moreover this numerical approximation can be computed in ≤C_2 N logN operations, where N = 2A/h is the number of degrees of freedom. The values of the constants C1 and C2 depend only on the set Q and not on the wavenumber k or the support of z.
Resumo:
Methods for predicting the shear capacity of FRP shear strengthened RC beams assume the traditional approach of superimposing the contribution of the FRP reinforcing to the contributions from the reinforcing steel and the concrete. These methods become the basis for most guides for the design of externally bonded FRP systems for strengthening concrete structures. The variations among them come from the way they account for the effect of basic shear design parameters on shear capacity. This paper presents a simple method for defining improved equations to calculate the shear capacity of reinforced concrete beams externally shear strengthened with FRP. For the first time, the equations are obtained in a multiobjective optimization framework solved by using genetic algorithms, resulting from considering simultaneously the experimental results of beams with and without FRP external reinforcement. The performance of the new proposed equations is compared to the predictions with some of the current shear design guidelines for strengthening concrete structures using FRPs. The proposed procedure is also reformulated as a constrained optimization problem to provide more conservative shear predictions.
Resumo:
The transition of internally heated inclined plane parallel shear flows is examined numerically for the case of finite values of the Prandtl number Pr. We show that as the strength of the homogeneously distributed heat source is increased the basic flow loses stability to two-dimensional perturbations of the transverse roll type in a Hopf bifurcation for the vertical orientation of the fluid layer, whereas perturbations of the longitudinal roll type are most dangerous for a wide range of the value of the angle of inclination. In the case of the horizontal inclination transverse roll and longitudinal roll perturbations share the responsibility for the prime instability. Following the linear stability analysis for the general inclination of the fluid layer our attention is focused on a numerical study of the finite amplitude secondary travelling-wave solutions (TW) that develop from the perturbations of the transverse roll type for the vertical inclination of the fluid layer. The stability of the secondary TW against three-dimensional perturbations is also examined and our study shows that for Pr=0.71 the secondary instability sets in as a quasi-periodic mode, while for Pr=7 it is phase-locked to the secondary TW. The present study complements and extends the recent study by Nagata and Generalis (2002) in the case of vertical inclination for Pr=0.
Resumo:
The inclined plane test (IPT) is commonly performed to measure the interface shear strength between different materials as those used in cover systems of landfills. The test, when interpreted according to European test Standards provides the static interface friction angle, usually assumed for 50 mm displacement and denoted as phi(stat)(50). However, if interpreted considering the several phases of the sliding process, the test is capable of yielding more realistic information about the interface shear strength such as differentiating interfaces which exhibit the same value of phi(stat)(50) but different behavior for displacement less than 50 mm. In this paper, the IPT is used to evaluate the interface shear strength of some materials usually present in cover liner systems of landfill. The results of the tests were analyzed for both, the static and the dynamic phases of the sliding and were interpreted based on the static initial friction angle, phi(0), and the limit friction angle, phi(lim). It is shown that depending on the sliding behavior of the interfaces, phi(stat)(50), which is usually adopted as the designing parameter in stability analysis, can be larger than phi(0) and phi(lim). (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Tämän työn tavoitteena oli tutkia rakeisen materiaalin kinematiikkaa ja rakentaa koelaitteisto rakeisen materiaalin leikkausjännitysvirtauksien tutkimiseen. Kokeellisessa osassa on keskitytty sisäisiin voimaheilahteluihin ja niiden ymmärtämiseen. Teoriaosassa on käyty läpi rakeisen materiaalin yleisiä ominaisuuksia ja lisäksi on esitetty kaksi eri tapaa mallintaa fysikaalisien ominaisuuksien heilahteluja rakeisessa materiaalissa. Nämä kaksi esitettyä mallinnusmenetelmää ovat skalaarinen q-malli ja simulointi. Skalaarinen q-malli määrittelee jokaiseen yksittäiseen rakeeseen kohdistuvan jännityksen, rakeen ollessa osa 2- tai 3-dimensionaalista asetelmaa. Tämän mallin perusidea on kuvata jännityksien epähomogeenisuutta, joka johtuu rakeiden satunnaisasettelusta. Simulointimallinnus perustuu event-driven algoritmiin, missä systeemin dynamiikkaa kuvataan yksittäisillä partikkelien törmäyksillä. Törmäyksien vaiheet ratkaistiin käyttämällä liikemääräyhtälöitä ja restituution määritelmää. Teoriaosuudessa käytiin vielä pieniltä osin läpi syitä jännitysheilahteluihin ja rakeisen materiaalin lukkiintumiseen. Tutkimuslaitteistolla tutkittiin rakeisen materiaalin käyttäytymistä rengasmaisessa leikkausjännitysvirtauksessa. Tutkimusosuuden päätavoitteena oli mitata partikkelien kosketuksista ja törmäyksistä johtuvia hetkellisiä voimaheilahteluja rengastilavuuden pohjalta. Rakeisena materiaalina tutkimuksessa käytettiin teräskuulia. Jännityssignaali ajan funktiona osoittaa suurta heilahtelua, joka voi olla jopa kertalukua keskiarvosta suurempaa. Tällainen suuren amplitudin omaava heilahtelu on merkittävä haittapuoli yleisesti rakeisissa materiaaleissa käytettyjen jatkuvuusmallien kanssa. Tällainen heilahtelu tekee käytetyt jatkuvuusmallit epäpäteviksi. Yleisellä tasolla jännityksien todennäköisyysjakauma on yhtäpitävä skalaarisen q-mallin tuloksien kanssa. Molemmissa tapauksissa todennäköisyysjakaumalla on eksponentiaalinen muoto.
Resumo:
In order to establish constitutive equations for a viscoelastic fluid uniform shear flow is usually required. However, in the last 10 years S. Q. Wang and co-workers have demonstrated that some entangled polymers do not flow with the uniform shear rate as usually assumed, but instead choose to separate into fast and slow flowing regions. This phenomenon, known as shear banding, causes flow instabilities and in principle invalidates all rheological measurements when it occurs. In this Letter we report the first observation of shear banding in molecular dynamics simulations of entangled polymer melts. We show that our observations are in a very good agreement with the phenomenology developed by Fielding and Olmsted. Our findings provide a simple way of validating the empirical macroscopic phenomenology of shear banding. © 2012 American Physical Society