930 resultados para Immunoglobulin Fc Fragments
Resumo:
We have developed a technique called the generation of longer cDNA fragments from serial analysis of gene expression (SAGE) tags for gene identification (GLGI), to convert SAGE tags of 10 bases into their corresponding 3′ cDNA fragments covering hundred bases. A primer containing the 10-base SAGE tag is used as the sense primer, and a single base anchored oligo(dT) primer is used as an antisense primer in PCR, together with Pfu DNA polymerase. By using this approach, a cDNA fragment extending from the SAGE tag toward the 3′ end of the corresponding sequence can be generated. Application of the GLGI technique can solve two critical issues in applying the SAGE technique: one is that a longer fragment corresponding to a SAGE tag, which has no match in databases, can be generated for further studies; the other is that the specific fragment corresponding to a SAGE tag can be identified from multiple sequences that match the same SAGE tag. The development of the GLGI method provides several potential applications. First, it provides a strategy for even wider application of the SAGE technique for quantitative analysis of global gene expression. Second, a combined application of SAGE/GLGI can be used to complete the catalogue of the expressed genes in human and in other eukaryotic species. Third, it can be used to identify the 3′ cDNA sequence from any exon within a gene. It can also be used to confirm the reality of exons predicted by bioinformatic tools in genomic sequences. Fourth, a combined application of SAGE/GLGI can be applied to define the 3′ boundary of expressed genes in the genomic sequences in human and in other eukaryotic genomes.
Resumo:
To accelerate gene isolation from plants by positional cloning, vector systems suitable for both chromosome walking and genetic complementation are highly desirable. Therefore, we developed a transformation-competent artificial chromosome (TAC) vector, pYLTAC7, that can accept and maintain large genomic DNA fragments stably in both Escherichia coli and Agrobacterium tumefaciens. Furthermore, it has the cis sequences required for Agrobacterium-mediated gene transfer into plants. We cloned large genomic DNA fragments of Arabidopsis thaliana into the vector and showed that most of the DNA fragments were maintained stably. Several TAC clones carrying 40- to 80-kb genomic DNA fragments were transferred back into Arabidopsis with high efficiency and shown to be inherited faithfully among the progeny. Furthermore, we demonstrated the practical utility of this vector system for positional cloning in Arabidopsis. A TAC contig was constructed in the region of the SGR1 locus, and individual clones with ca. 80-kb inserts were tested for their ability to complement the gravitropic defects of a homozygous mutant line. Successful complementation enabled the physical location of SGR1 to be delimited with high precision and confidence.
Resumo:
Single-chain antibody mutants have been evolved in vitro with antigen-binding equilibrium dissociation constant Kd = 48 fM and slower dissociation kinetics (half-time > 5 days) than those for the streptavidin–biotin complex. These mutants possess the highest monovalent ligand-binding affinity yet reported for an engineered protein by over two orders of magnitude. Optimal kinetic screening of randomly mutagenized libraries of 105–107 yeast surface-displayed antibodies enabled a >1,000-fold decrease in the rate of dissociation after four cycles of affinity mutagenesis and screening. The consensus mutations are generally nonconservative by comparison with naturally occurring mouse Fv sequences and with residues that do not contact the fluorescein antigen in the wild-type complex. The existence of these mutants demonstrates that the antibody Fv architecture is not intrinsically responsible for an antigen-binding affinity ceiling during in vivo affinity maturation.
Resumo:
Paired Ig-like receptors (PIR) that can reciprocally modulate cellular activation have been described in mammals. In the present study, we searched expressed sequence tag databases for PIR relatives to identify chicken expressed sequence tags predictive of ≈25% amino acid identity to mouse PIR. Rapid amplification of cDNA ends (RACE)-PCR extension of expressed sequence-tag sequences using chicken splenic cDNA as a template yielded two distinct cDNAs, the sequence analysis of which predicted protein products with related extracellular Ig-like domains. Chicken Ig-like receptor (CHIR)-A was characterized by its transmembrane segment with a positively charged histidine residue and short cytoplasmic tail, thereby identifying CHIR-A as a candidate-activating receptor. Conversely, CHIR-B was characterized by its nonpolar transmembrane segment and cytoplasmic tail with two immunoreceptor tyrosine-based inhibitory motifs, indicating that it may serve as an inhibitory receptor. The use of CHIR amino acid sequences in a search for other PIR relatives led to the recognition of mammalian Fc receptors as distantly related genes. Comparative analyses based on amino acid sequences and three-dimensional protein structures provided molecular evidence for common ancestry of the PIR and Fc receptor gene families.
Resumo:
B cell diffuse large cell lymphoma (B-DLCL) is a heterogeneous group of tumors, based on significant variations in morphology, clinical presentation, and response to treatment. Gene expression profiling has revealed two distinct tumor subtypes of B-DLCL: germinal center B cell-like DLCL and activated B cell-like DLCL. In a separate study, we determined that B-DLCL can also be subdivided into two groups based on the presence or absence of ongoing Ig gene hypermutation. Here, we evaluated the correlation between these B-DLCL subtypes established by the two different methods. Fourteen primary B-DLCL cases were studied by gene expression profiling using DNA microarrays and for the presence of ongoing mutations in their Ig heavy chain gene. All seven cases classified as germinal center B cell-like DLCL by gene expression showed the presence of ongoing mutations in the Ig genes. Five of the seven cases classified by gene expression as activated B cell-like DLCL had no ongoing somatic mutations, whereas, in the remaining two cases, a single point mutation was observed in only 2 of 15 and 21 examined molecular clones of variable heavy (VH) chain gene, respectively. These two cases were distantly related to the rest of the activated B cell-like DLCL tumors by gene expression. Our findings validate the concept that lymphoid malignancies are derived from cells at discrete stages of normal lymphocyte maturation and that the malignant cells retain the genetic program of those normal cells.
Resumo:
To determine human Ig heavy chain variable region (VH) gene segment organization on individual homologous chromosomes, an efficient approach has been developed. Single spermatozoa were used as subjects for the study. Upon sperm lysis, VH regions in each sperm were randomly sheared into fragments by the random Brownian force. The fragments were separated from each other by aliquoting the lysate into a certain number of tubes. The gene segments in the VH1 and VH4 families in each tube were identified by denaturing gradient gel electrophoresis after PCR amplification. The polymorphic VH sequences were used to determine the parental origins of the analyzed sperm. VH segment organization in the parental haplotypes was determined by aligning the overlapping fragments from the spermatozoa with the corresponding haplotypes. Based on this comparison between the resulting haplotype maps and the composite map reported previously, the VH region on chromosome 14 could be subdivided into four portions. The numbers and compositions of the VH gene segments differ considerably among the maps in two portions, but are highly conserved in the other two. The data also indicate that the VH region on chromosome 15 may contain a large duplicated block with copy number varying among haplotypes. The approach used in the present study may be used to construct high-resolution haplotype maps without molecular cloning.
Resumo:
Pseudogenes are non-functioning copies of genes in genomic DNA, which may either result from reverse transcription from an mRNA transcript (processed pseudogenes) or from gene duplication and subsequent disablement (non-processed pseudogenes). As pseudogenes are apparently ‘dead’, they usually have a variety of obvious disablements (e.g., insertions, deletions, frameshifts and truncations) relative to their functioning homologs. We have derived an initial estimate of the size, distribution and characteristics of the pseudogene population in the Caenorhabditis elegans genome, performing a survey in ‘molecular archaeology’. Corresponding to the 18 576 annotated proteins in the worm (i.e., in Wormpep18), we have found an estimated total of 2168 pseudogenes, about one for every eight genes. Few of these appear to be processed. Details of our pseudogene assignments are available from http://bioinfo.mbb.yale.edu/genome/worm/pseudogene. The population of pseudogenes differs significantly from that of genes in a number of respects: (i) pseudogenes are distributed unevenly across the genome relative to genes, with a disproportionate number on chromosome IV; (ii) the density of pseudogenes is higher on the arms of the chromosomes; (iii) the amino acid composition of pseudogenes is midway between that of genes and (translations of) random intergenic DNA, with enrichment of Phe, Ile, Leu and Lys, and depletion of Asp, Ala, Glu and Gly relative to the worm proteome; and (iv) the most common protein folds and families differ somewhat between genes and pseudogenes—whereas the most common fold found in the worm proteome is the immunoglobulin fold and the most common ‘pseudofold’ is the C-type lectin. In addition, the size of a gene family bears little overall relationship to the size of its corresponding pseudogene complement, indicating a highly dynamic genome. There are in fact a number of families associated with large populations of pseudogenes. For example, one family of seven-transmembrane receptors (represented by gene B0334.7) has one pseudogene for every four genes, and another uncharacterized family (represented by gene B0403.1) is approximately two-thirds pseudogenic. Furthermore, over a hundred apparent pseudogenic fragments do not have any obvious homologs in the worm.
Resumo:
The actin cytoskeleton plays a significant role in changes of cell shape and motility, and interactions between the actin filaments and the cell membrane are crucial for a variety of cellular processes. Several adaptor proteins, including talin, maintain the cytoskeleton-membrane linkage by binding to integral membrane proteins and to the cytoskeleton. Layilin, a recently characterized transmembrane protein with homology to C-type lectins, is a membrane-binding site for talin in peripheral ruffles of spreading cells. To facilitate studies of layilin's function, we have generated a layilin-Fc fusion protein comprising the extracellular part of layilin joined to human immunoglobulin G heavy chain and used this chimera to identify layilin ligands. Here, we demonstrate that layilin-Fc fusion protein binds to hyaluronan immobilized to Sepharose. Microtiter plate-binding assays, coprecipitation experiments, and staining of sections predigested with different glycosaminoglycan-degrading enzymes and cell adhesion assays all revealed that layilin binds specifically to hyaluronan but not to other tested glycosaminoglycans. Layilin's ability to bind hyaluronan, a ubiquitous extracellular matrix component, reveals an interesting parallel between layilin and CD44, because both can bind to cytoskeleton-membrane linker proteins through their cytoplasmic domains and to hyaluronan through their extracellular domains. This parallelism suggests a role for layilin in cell adhesion and motility.
Resumo:
Many DNA polymerases (Pol) have an intrinsic 3′→5′ exonuclease (Exo) activity which corrects polymerase errors and prevents mutations. We describe a role of the 3′→5′ Exo of Pol δ as a supplement or backup for the Rad27/Fen1 5′ flap endonuclease. A yeast rad27 null allele was lethal in combination with Pol δ mutations in Exo I, Exo II, and Exo III motifs that inactivate its exonuclease, but it was viable with mutations in other parts of Pol δ. The rad27-p allele, which has little phenotypic effect by itself, was also lethal in combination with mutations in the Pol δ Exo I and Exo II motifs. However, rad27-p Pol δ Exo III double mutants were viable. They exhibited strong synergistic increases in CAN1 duplication mutations, intrachromosomal and interchromosomal recombination, and required the wild-type double-strand break repair genes RAD50, RAD51, and RAD52 for viability. Observed effects were similar to those of the rad27-null mutant deficient in the removal of 5′ flaps in the lagging strand. These results suggest that the 3′→5′ Exo activity of Pol δ is redundant with Rad27/Fen1 for creating ligatable nicks between adjacent Okazaki fragments, possibly by reducing the amount of strand-displacement in the lagging strand.
Resumo:
The huntingtin exon 1 proteins with a polyglutamine repeat in the pathological range (51 or 83 glutamines), but not with a polyglutamine tract in the normal range (20 glutamines), form aggresome-like perinuclear inclusions in human 293 Tet-Off cells. These structures contain aggregated, ubiquitinated huntingtin exon 1 protein with a characteristic fibrillar morphology. Inclusion bodies with truncated huntingtin protein are formed at centrosomes and are surrounded by vimentin filaments. Inhibition of proteasome activity resulted in a twofold increase in the amount of ubiquitinated, SDS-resistant aggregates, indicating that inclusion bodies accumulate when the capacity of the ubiquitin–proteasome system to degrade aggregation-prone huntingtin protein is exhausted. Immunofluorescence and electron microscopy with immunogold labeling revealed that the 20S, 19S, and 11S subunits of the 26S proteasome, the molecular chaperones BiP/GRP78, Hsp70, and Hsp40, as well as the RNA-binding protein TIA-1, the potential chaperone 14–3-3, and α-synuclein colocalize with the perinuclear inclusions. In 293 Tet-Off cells, inclusion body formation also resulted in cell toxicity and dramatic ultrastructural changes such as indentations and disruption of the nuclear envelope. Concentration of mitochondria around the inclusions and cytoplasmic vacuolation were also observed. Together these findings support the hypothesis that the ATP-dependent ubiquitin–proteasome system is a potential target for therapeutic interventions in glutamine repeat disorders.
Resumo:
Suspension-cultured tomato (Lycopersicon esculentum) cells react to stimulation by chitin fragments with a rapid, transient alkalinization of the growth medium, but behave refractory to a second treatment with the same stimulus (G. Felix, M. Regenass, T. Boller [1993] Plant J 4: 307–316). We analyzed this phenomenon and found that chitin fragments caused desensitization in a time- and concentration-dependent manner. Partially desensitized cells exhibited a clear shift toward lower sensitivity of the perception system. The ability of chitin oligomers to induce desensitization depended on the degree of polymerization (DP), with DP5 ≈ DP4 ≫ DP3 ≫ DP2 > DP1. This correlates with the ability of these oligomers to induce the alkalinization response and to compete for the high-affinity binding site on tomato cells and microsomal membranes, indicating that the alkalinization response and the desensitization process are mediated by the same receptor. The dose required for half-maximal desensitization was about 20 times lower than the dose required for half-maximal alkalinization; desensitization could therefore be used as a highly sensitive bioassay for chitin fragments and chitin-related stimuli such as lipochitooligosaccharides (nodulation factors) from Rhizobium leguminosarum. Desensitization was not associated with increased inactivation of the stimulus or with a disappearance of high-affinity binding sites from the cell surface, and thus appears to be caused by an intermediate step in signal transduction.
Resumo:
The four major oligomeric reaction products from saponified modified hairy regions (MHR-S) from apple, produced by recombinant rhamnogalacturonan (RG) α-l-rhamnopyranosyl-(1,4)-α-d-galactopyranosyluronide lyase (rRG-lyase) from Aspergillus aculeatus, were isolated and characterized by 1H-nuclear magnetic resonance spectroscopy. They contain an alternating RG backbone with a degree of polymerization of 4, 6, 8, and 10 and with an α-Δ-(4,5)-unsaturated d-galactopyranosyluronic acid at the nonreducing end and an l-rhamnopyranose at the reducing end. l-Rhamnopyranose units are substituted at C-4 with β-galactose. The maximum reaction rate of rRG-lyase toward MHR-S at pH 6.0 and 31°C was 28 units mg−1. rRG-lyase and RG-hydrolase cleave the same alternating RG I subunit in MHR. Both of these enzymes fragment MHR by a multiple attack mechanism. The catalytic efficiency of rRG-lyase for MHR increases with decreasing degree of acetylation. Removal of arabinose side chains improves the action of rRG-lyase toward MHR-S. In contrast, removal of galactose side chains decreased the catalytic efficiency of rRG-lyase. Native RG-lyase was purified from A. aculeatus, characterized, and found to be similar to the rRG-lyase expressed in Aspergillus oryzae.
Resumo:
Human apolipoprotein (apo) E4, a major risk factor for Alzheimer's disease (AD), occurs in amyloid plaques and neurofibrillary tangles (NFTs) in AD brains; however, its role in the pathogenesis of these lesions is unclear. Here we demonstrate that carboxyl-terminal-truncated forms of apoE, which occur in AD brains and cultured neurons, induce intracellular NFT-like inclusions in neurons. These cytosolic inclusions were composed of phosphorylated tau, phosphorylated neurofilaments of high molecular weight, and truncated apoE. Truncated apoE4, especially apoE4(Δ272–299), induced inclusions in up to 75% of transfected neuronal cells, but not in transfected nonneuronal cells. ApoE4 was more susceptible to truncation than apoE3 and resulted in much greater intracellular inclusion formation. These results suggest that apoE4 preferentially undergoes intracellular processing, creating a bioactive fragment that interacts with cytoskeletal components and induces NFT-like inclusions containing phosphorylated tau and phosphorylated neurofilaments of high molecular weight in neurons.
Resumo:
Mouse mast cells express gp49B1, a cell-surface member of the Ig superfamily encoded by the gp49B gene. We now report that by ALIGN comparison of the amino acid sequence of gp49B1 with numerous receptors of the Ig superfamily, a newly recognized family has been established that includes gp49B1, the human myeloid cell Fc receptor for IgA, the bovine myeloid cell Fc receptor for IgG2, and the human killer cell inhibitory receptors expressed on natural killer cells and T lymphocyte subsets. Furthermore, the cytoplasmic domain of gp49B1 contains two immunoreceptor tyrosine-based inhibition motifs that are also present in killer cell inhibitory receptors; these motifs downregulate natural killer cell and T-cell activation signals that lead to cytotoxic activity. As assessed by flow cytometry with transfectants that express either gp49B1 or gp49A, which are 89% identical in the amino acid sequences of their extracellular domains, mAb B23.1 was shown to recognize only gp49B1. Coligation of mAb B23.1 bound to gp49B1 and IgE fixed to the high-affinity Fc receptor for IgE on the surface of mouse bone marrow-derived mast cells inhibited exocytosis in a dose-related manner, as defined by the release of the secretory granule constituent beta-hexosaminidase, as well as the generation of the membrane-derived lipid mediator, leukotriene C4. Thus, gp49B1 is an immunoreceptor tyrosine-based inhibition motif-containing integral cell-surface protein that downregulates the high-affinity Fc receptor for IgE-mediated release of proinflammatory mediators from mast cells. Our findings establish a novel counterregulatory transmembrane pathway by which mast cell activation can be inhibited.