921 resultados para Imagerie du tenseur de diffusion
Resumo:
The present work involves a computational study of soot (chosen as a scalar which is a primary pollutant source) formation and transport in a laminar acetylene diffusion flame perturbed by a convecting line vortex. The topology of soot contours resulting from flame vortex interactions has been investigated. More soot was produced when vortex was introduced from the air side in comparison to the fuel side. Also, the soot topography was spatially more diffuse in the case of air side vortex. The computational model was found to be in good agreement with the experimental work previously reported in the literature. The computational simulation enabled a study of various parameters like temperature, equivalence ratio and temperature gradient affecting the soot production and transport. Temperatures were found to be higher in the case of air side vortex in contrast to the fuel side one. In case of fuel side vortex, abundance of fuel in the vortex core resulted in fuel-rich combustion zone in the core and a more discrete soot topography. Besides, the overall soot production was observed to be low in the fuel side vortex. However, for the air side vortex, air abundance in the core resulted in higher temperatures and greater soot production. Probability density functions (PDFs) have been introduced to investigate the spatiotemporal variation of soot yield and transport and their dependence on temperature and acetylene concentration from statistical view point. In addition, the effect of flame curvature on soot production is also studied. The regions convex to fuel stream side witnessed thicker soot layer. All numerical simulations have been carried out on Fluent 6.3.26. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The confinement of a polymer to volumes whose characteristic linear dimensions are comparable to or smaller than its bulk radius of gyration R-G,R-bulk can produce significant changes in its static and dynamic properties, with important implications for the understanding of single-molecule processes in biology and chemistry. In this paper, we present calculations of the effects of a narrow rectangular slit of thickness d on the scaling behavior of the diffusivity D and relaxation time tau(r) of a Gaussian chain of polymerization index N and persistence length l(0). The calculations are based on the Rouse-Zimm model of chain dynamics, with the pre-averaged hydrodynamic interaction being obtained from the solutions to Stokes equations for an incompressible fluid in a parallel plate geometry in the limit of small d. They go beyond de Gennes' purely phenomenological analysis of the problem based on blobs, which has so far been the only analytical route to the determination of chain scaling behavior for this particular geometry. The present model predicts that D similar to dN(-1) ln(N/d(2)) and tau(r) similar to N(2)d(-1) ln(N/d(2))(-1) in the regime of moderate confinement, where l(0) << d < R-G,R-bulk. The corresponding results for the blob model have exactly the same power law behavior, but contain no logarithmic corrections; the difference suggests that segments within a blob may actually be partially draining and not non-draining as generally assumed. (C) 2013 AIP Publishing LLC.
Resumo:
In this paper we clarify the role of Markstein diffusivity, which is the product of the planar laminar flame speed and the Markstein length, on the turbulent flame speed and its scaling, based on experimental measurements on constant-pressure expanding turbulent flames. Turbulent flame propagation data are presented for premixed flames of mixtures of hydrogen, methane, ethylene, n-butane, and dimethyl ether with air, in near-isotropic turbulence in a dual-chamber, fan-stirred vessel. For each individual fuel-air mixture presented in this work and the recently published iso-octane data from Leeds, normalized turbulent flame speed data of individual fuel-air mixtures approximately follow a Re-T,f(0.5) scaling, for which the average radius is the length scale and thermal diffusivity is the transport property of the turbulence Reynolds number. At a given Re-T,Re-f, it is experimentally observed that the normalized turbulent flame speed decreases with increasing Markstein number, which could be explained by considering Markstein diffusivity as the leading dissipation mechanism for the large wave number flame surface fluctuations. Consequently, by replacing thermal diffusivity with the Markstein diffusivity in the turbulence Reynolds number definition above, it is found that normalized turbulent flame speeds could be scaled by Re-T,M(0.5) irrespective of the fuel, equivalence ratio, pressure, and turbulence intensity for positive Markstein number flames.
Resumo:
Hollow nanostructures are used for various applications including catalysis, sensing, and drug delivery. Methods based on the Kirkendall effect have been the most successful for obtaining hollow nanostructures of various multicomponent systems. The classical Kirkendall effect relies on the presence of a faster diffusing species in the core; the resultant imbalance in flux results in the formation of hollow structures. Here, an alternate non-Kirkendall mechanism that is operative for the formation of hollow single crystalline particles of intermetallic PtBi is demonstrated. The synthesis method involves sequential reduction of Pt and Bi salts in ethylene glycol under microwave irradiation. Detailed analysis of the reaction at various stages indicates that the formation of the intermetallic PtBi hollow nanoparticles occurs in steps. The mechanistic details are elucidated using control experiments. The use of microwave results in a very rapid synthesis of intermetallics PtBi that exhibits excellent electrocatalytic activity for formic acid oxidation reaction. The method presented can be extended to various multicomponent systems and is independent of the intrinsic diffusivities of the species involved.
Resumo:
Recent focus of flood frequency analysis (FFA) studies has been on development of methods to model joint distributions of variables such as peak flow, volume, and duration that characterize a flood event, as comprehensive knowledge of flood event is often necessary in hydrological applications. Diffusion process based adaptive kernel (D-kernel) is suggested in this paper for this purpose. It is data driven, flexible and unlike most kernel density estimators, always yields a bona fide probability density function. It overcomes shortcomings associated with the use of conventional kernel density estimators in FFA, such as boundary leakage problem and normal reference rule. The potential of the D-kernel is demonstrated by application to synthetic samples of various sizes drawn from known unimodal and bimodal populations, and five typical peak flow records from different parts of the world. It is shown to be effective when compared to conventional Gaussian kernel and the best of seven commonly used copulas (Gumbel-Hougaard, Frank, Clayton, Joe, Normal, Plackett, and Student's T) in estimating joint distribution of peak flow characteristics and extrapolating beyond historical maxima. Selection of optimum number of bins is found to be critical in modeling with D-kernel.
Resumo:
Many meteorological phenomena occur at different locations simultaneously. These phenomena vary temporally and spatially. It is essential to track these multiple phenomena for accurate weather prediction. Efficient analysis require high-resolution simulations which can be conducted by introducing finer resolution nested simulations, nests at the locations of these phenomena. Simultaneous tracking of these multiple weather phenomena requires simultaneous execution of the nests on different subsets of the maximum number of processors for the main weather simulation. Dynamic variation in the number of these nests require efficient processor reallocation strategies. In this paper, we have developed strategies for efficient partitioning and repartitioning of the nests among the processors. As a case study, we consider an application of tracking multiple organized cloud clusters in tropical weather systems. We first present a parallel data analysis algorithm to detect such clouds. We have developed a tree-based hierarchical diffusion method which reallocates processors for the nests such that the redistribution cost is less. We achieve this by a novel tree reorganization approach. We show that our approach exhibits up to 25% lower redistribution cost and 53% lesser hop-bytes than the processor reallocation strategy that does not consider the existing processor allocation.
Resumo:
Growth kinetics, phase boundary compositions, interdiffusion coefficients and the relative mobilities of the components are determined in the W-Pt system. The measured phase boundary compositions for the gamma phase are found to be different from the reported phase diagram. The interdiffusion coefficient and the activation energy decrease in the Pt(W) solid solution with increasing W content. An estimation of the parabolic growth constants and average interdiffusion coefficients in the gamma phase indicates that the diffusion process should be explained based on the estimation of diffusion parameters, which otherwise could lead to a wrong conclusion. The estimation of the relative mobilities of the components in the gamma phase indicates that Pt has a much higher diffusion rate than W. This is explained with the help of the crystal structure and the possible point defects present on different sublattices.
Resumo:
Diffusion controlled growth of the phases in Hf-Si and Zr-Si systems are studied by bulk diffusion couple technique. Only two phases grow in the interdiffusion zone, although several phases are present in both the systems. The location of the Kirkendall marker plane, detected based on the grain morphology, indicates that disilicides grow by the diffusion of Si. Diffusion of the metal species in these phases is negligible. This indicates that vacancies are present mainly on the Si sublattice. The activation energies for integrated diffusion coefficients in the HfSi2 and ZrSi2 are estimated as 394 +/- 37 and 346 +/- 34 kJ mol(-1), respectively. The same is calculated for the HfSi phase as 485 +/- 42 kJ mol(-1). The activation energies for Si tracer diffusion in the HfSi2 and ZrSi2 phases are estimated as 430 +/- 36 and 348 +/- 34 kJ mol(-1), respectively. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Solid diffusion couple experiments are conducted to analyse the growth mechanism of the phases and the diffusion mechanism of the components in the Ti-Si system. The calculation of the parabolic growth constants and the integrated diffusion coefficients substantiates that the analysis is intrinsically prone to erroneous conclusions if it is based on just the parabolic growth constants determined for a multiphase interdiffusion zone. The location of the marker plane is detected based on the uniform grain morphology in the TiSi2 phase, which indicates that this phase grows mainly because of Si diffusion. The growth mechanism of the phases and morphological evolution in the interdiffusion zone are explained with the help of imaginary diffusion couples. The activation enthalpies for the integrated diffusion coefficient of TiSi2 and the Si tracer diffusion are calculated as 190 +/- 9 and 197 +/- 8 kJ/mol, respectively. The crystal structure, details on the nearest neighbours of the components, and their relative mobilities indicate that the vacancies are mainly present on the Si sublattice.
Resumo:
Diffusion controlled growth of the phases in Hf-Si and Zr-Si systems are studied by bulk diffusion couple technique. Only two phases grow in the interdiffusion zone, although several phases are present in both the systems. The location of the Kirkendall marker plane, detected based on the grain morphology, indicates that disilicides grow by the diffusion of Si. Diffusion of the metal species in these phases is negligible. This indicates that vacancies are present mainly on the Si sublattice. The activation energies for integrated diffusion coefficients in the HfSi2 and ZrSi2 are estimated as 394 +/- 37 and 346 +/- 34 kJ mol(-1), respectively. The same is calculated for the HfSi phase as 485 +/- 42 kJ mol(-1). The activation energies for Si tracer diffusion in the HfSi2 and ZrSi2 phases are estimated as 430 +/- 36 and 348 +/- 34 kJ mol(-1), respectively. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Nuclear pore complexes (NPCs) are very selective filters that sit on the membrane of the nucleus and monitor the transport between the cytoplasm and the nucleoplasm. For the central plug of NPC two models have been suggested in the literature. The first suggests that the plug is a reversible hydrogel while the other suggests that it is a polymer brush. Here we propose a model for the transport of a protein through the plug, which is general enough to cover both the models. The protein stretches the plug and creates a local deformation, which together with the protein, we refer to as the bubble. We start with the free energy for creation of the bubble and consider its motion within the plug. The relevant coordinate is the center of the bubble which executes random walk. We find that for faster relaxation of the gel, the diffusion of the bubble is greater. (C) 2014 Elsevier-B.V. All rights reserved.
Resumo:
Group VB and VIB M-Si systems are considered to show an interesting pattern in the diffusion of components with the change in atomic number in a particular group (M = V, Nb, Ta or M = Mo, W, respectively). Mainly two phases, MSi2 and M5Si3 are considered for this discussion. Except for Ta-silicides, the activation energy for the integrated diffusion of MSi2 is always lower than M5Si3. In both phases, the relative mobilities measured by the ratio of the tracer diffusion coefficients, , decrease with an increasing atomic number in the given group. If determined at the same homologous temperature, the interdiffusion coefficients increase with the atomic number of the refractory metal in the MSi2 phases and decrease in the M5Si3 ones. This behaviour features the basic changes in the defect concentrations on different sublattices with a change in the atomic number of the refractory components.
Resumo:
Monodisperse colloidal gold-indium (AuIn2) intermetallic nanoparticles have been synthesized from Au and In colloids using the digestive ripening process. Formation of the intermetallic proceeds via digestive ripening facilitated atomic diffusion of Au and In atoms from the Au and In nanoparticles followed simultaneously by their growth in the solution. Optimization of the reaction temperature was found to be crucial for the formation of AuIn2 intermetallic from gold and indium nanoparticles. Transmission electron microscopy revealed the presence of nearly monodisperse nanoparticles of Au and AuIn2 with particle size distribution of 3.7 +/- 1.0 nm and 5.0 +/- 1.6 nm, respectively. UV-visible spectral studies brought out the absence of SPR band in pure AuIn2 intermetallic nanoparticles. Optical study and electron microscopy, in combination with powder X-ray diffraction established phase pure AuIn2 intermetallic nanoparticles unambiguously. The potential of such an unprecedented approach has been further exploited in the synthesis of Ag3In intermetallic nanoparticles with the dimension of less than 10 nm. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Na-ion batteries are currently the focus of significant research activity due to the relative abundance of sodium and its consequent cost advantages. Recently, the pyrophosphate family of cathodes has attracted considerable attention, particularly Li2FeP2O7 related to its high operating voltage and enhanced safety properties; in addition the sodium-based pyrophosphates Na2FeP2O7 and Na2MnP2O7 are also generating interest. Herein, we present defect chemistry and ion migration results, determined via atomistic simulation techniques, for Na2MP2O7 (where M = Fe, Mn) as well as findings for Li2FeP2O7 for direct comparison. Within the pyrophosphate framework the most favourable intrinsic defect type is found to be the antisite defect, in which alkali-cations (Na/Li) and M ions exchange positions. Low activation energies are found for long-range diffusion in all crystallographic directions in Na2MP2O7 suggesting three-dimensional (3D) Na-ion diffusion. In contrast Li2FeP2O7 supports 2D Li-ion diffusion. The 2D or 3D nature of the alkali-ion migration pathways within these pyrophosphate materials means that antisite defects are much less likely to impede their transport properties, and hence important for high rate performance.