917 resultados para Imágenes cerebrales
Resumo:
El análisis de imágenes hiperespectrales permite obtener información con una gran resolución espectral: cientos de bandas repartidas desde el espectro infrarrojo hasta el ultravioleta. El uso de dichas imágenes está teniendo un gran impacto en el campo de la medicina y, en concreto, destaca su utilización en la detección de distintos tipos de cáncer. Dentro de este campo, uno de los principales problemas que existen actualmente es el análisis de dichas imágenes en tiempo real ya que, debido al gran volumen de datos que componen estas imágenes, la capacidad de cómputo requerida es muy elevada. Una de las principales líneas de investigación acerca de la reducción de dicho tiempo de procesado se basa en la idea de repartir su análisis en diversos núcleos trabajando en paralelo. En relación a esta línea de investigación, en el presente trabajo se desarrolla una librería para el lenguaje RVC – CAL – lenguaje que está especialmente pensado para aplicaciones multimedia y que permite realizar la paralelización de una manera intuitiva – donde se recogen las funciones necesarias para implementar dos de las cuatro fases propias del procesado espectral: reducción dimensional y extracción de endmembers. Cabe mencionar que este trabajo se complementa con el realizado por Raquel Lazcano en su Proyecto Fin de Grado, donde se desarrollan las funciones necesarias para completar las otras dos fases necesarias en la cadena de desmezclado. En concreto, este trabajo se encuentra dividido en varias partes. La primera de ellas expone razonadamente los motivos que han llevado a comenzar este Proyecto Fin de Grado y los objetivos que se pretenden conseguir con él. Tras esto, se hace un amplio estudio del estado del arte actual y, en él, se explican tanto las imágenes hiperespectrales como los medios y las plataformas que servirán para realizar la división en núcleos y detectar las distintas problemáticas con las que nos podamos encontrar al realizar dicha división. Una vez expuesta la base teórica, nos centraremos en la explicación del método seguido para componer la cadena de desmezclado y generar la librería; un punto importante en este apartado es la utilización de librerías especializadas en operaciones matriciales complejas, implementadas en C++. Tras explicar el método utilizado, se exponen los resultados obtenidos primero por etapas y, posteriormente, con la cadena de procesado completa, implementada en uno o varios núcleos. Por último, se aportan una serie de conclusiones obtenidas tras analizar los distintos algoritmos en cuanto a bondad de resultados, tiempos de procesado y consumo de recursos y se proponen una serie de posibles líneas de actuación futuras relacionadas con dichos resultados. ABSTRACT. Hyperspectral imaging allows us to collect high resolution spectral information: hundred of bands covering from infrared to ultraviolet spectrum. These images have had strong repercussions in the medical field; in particular, we must highlight its use in cancer detection. In this field, the main problem we have to deal with is the real time analysis, because these images have a great data volume and they require a high computational power. One of the main research lines that deals with this problem is related with the analysis of these images using several cores working at the same time. According to this investigation line, this document describes the development of a RVC – CAL library – this language has been widely used for working with multimedia applications and allows an optimized system parallelization –, which joins all the functions needed to implement two of the four stages of the hyperspectral imaging processing chain: dimensionality reduction and endmember extraction. This research is complemented with the research conducted by Raquel Lazcano in her Diploma Project, where she studies the other two stages of the processing chain. The document is divided in several chapters. The first of them introduces the motivation of the Diploma Project and the main objectives to achieve. After that, we study the state of the art of some technologies related with this work, like hyperspectral images and the software and hardware that we will use to parallelize the system and to analyze its performance. Once we have exposed the theoretical bases, we will explain the followed methodology to compose the processing chain and to generate the library; one of the most important issues in this chapter is the use of some C++ libraries specialized in complex matrix operations. At this point, we will expose the results obtained in the individual stage analysis and then, the results of the full processing chain implemented in one or several cores. Finally, we will extract some conclusions related with algorithm behavior, time processing and system performance. In the same way, we propose some future research lines according to the results obtained in this document
Resumo:
Las imágenes hiperespectrales permiten extraer información con una gran resolución espectral, que se suele extender desde el espectro ultravioleta hasta el infrarrojo. Aunque esta tecnología fue aplicada inicialmente a la observación de la superficie terrestre, esta característica ha hecho que, en los últimos años, la aplicación de estas imágenes se haya expandido a otros campos, como la medicina y, en concreto, la detección del cáncer. Sin embargo, este nuevo ámbito de aplicación ha generado nuevas necesidades, como la del procesado de las imágenes en tiempo real. Debido, precisamente, a la gran resolución espectral, estas imágenes requieren una elevada capacidad computacional para ser procesadas, lo que imposibilita la consecución de este objetivo con las técnicas tradicionales de procesado. En este sentido, una de las principales líneas de investigación persigue el objetivo del tiempo real mediante la paralelización del procesamiento, dividiendo esta carga computacional en varios núcleos que trabajen simultáneamente. A este respecto, en el presente documento se describe el desarrollo de una librería de procesado hiperespectral para el lenguaje RVC - CAL, que está específicamente pensado para el desarrollo de aplicaciones multimedia y proporciona las herramientas necesarias para paralelizar las aplicaciones. En concreto, en este Proyecto Fin de Grado se han desarrollado las funciones necesarias para implementar dos de las cuatro fases de la cadena de análisis de una imagen hiperespectral - en concreto, las fases de estimación del número de endmembers y de la estimación de la distribución de los mismos en la imagen -; conviene destacar que este trabajo se complementa con el realizado por Daniel Madroñal en su Proyecto Fin de Grado, donde desarrolla las funciones necesarias para completar las otras dos fases de la cadena. El presente documento sigue la estructura clásica de un trabajo de investigación, exponiendo, en primer lugar, las motivaciones que han cimentado este Proyecto Fin de Grado y los objetivos que se esperan alcanzar con él. A continuación, se realiza un amplio análisis del estado del arte de las tecnologías necesarias para su desarrollo, explicando, por un lado, las imágenes hiperespectrales y, por otro, todos los recursos hardware y software necesarios para la implementación de la librería. De esta forma, se proporcionarán todos los conceptos técnicos necesarios para el correcto seguimiento de este documento. Tras ello, se detallará la metodología seguida para la generación de la mencionada librería, así como el proceso de implementación de una cadena completa de procesado de imágenes hiperespectrales que permita la evaluación tanto de la bondad de la librería como del tiempo necesario para analizar una imagen hiperespectral completa. Una vez expuesta la metodología utilizada, se analizarán en detalle los resultados obtenidos en las pruebas realizadas; en primer lugar, se explicarán los resultados individuales extraídos del análisis de las dos etapas implementadas y, posteriormente, se discutirán los arrojados por el análisis de la ejecución de la cadena completa, tanto en uno como en varios núcleos. Por último, como resultado de este estudio se extraen una serie de conclusiones, que engloban aspectos como bondad de resultados, tiempos de ejecución y consumo de recursos; asimismo, se proponen una serie de líneas futuras de actuación con las que se podría continuar y complementar la investigación desarrollada en este documento. ABSTRACT. Hyperspectral imaging collects information from across the electromagnetic spectrum, covering a wide range of wavelengths. Although this technology was initially developed for remote sensing and earth observation, its multiple advantages - such as high spectral resolution - led to its application in other fields, as cancer detection. However, this new field has shown specific requirements; for example, it needs to accomplish strong time specifications, since all the potential applications - like surgical guidance or in vivo tumor detection - imply real-time requisites. Achieving this time requirements is a great challenge, as hyperspectral images generate extremely high volumes of data to process. For that reason, some new research lines are studying new processing techniques, and the most relevant ones are related to system parallelization: in order to reduce the computational load, this solution executes image analysis in several processors simultaneously; in that way, this computational load is divided among the different cores, and real-time specifications can be accomplished. This document describes the construction of a new hyperspectral processing library for RVC - CAL language, which is specifically designed for multimedia applications and allows multithreading compilation and system parallelization. This Diploma Project develops the required library functions to implement two of the four stages of the hyperspectral imaging processing chain - endmember and abundance estimations -. The two other stages - dimensionality reduction and endmember extraction - are studied in the Diploma Project of Daniel Madroñal, which complements the research work described in this document. The document follows the classical structure of a research work. Firstly, it introduces the motivations that have inspired this Diploma Project and the main objectives to achieve. After that, it thoroughly studies the state of the art of the technologies related to the development of the library. The state of the art contains all the concepts needed to understand the contents of this research work, like the definition and applications of hyperspectral imaging and the typical processing chain. Thirdly, it explains the methodology of the library implementation, as well as the construction of a complete processing chain in RVC - CAL applying the mentioned library. This chain will test both the correct behavior of the library and the time requirements for the complete analysis of one hyperspectral image, either executing the chain in one processor or in several ones. Afterwards, the collected results will be carefully analyzed: first of all, individual results -from endmember and abundance estimations stages - will be discussed and, after that, complete results will be studied; this results will be obtained from the complete processing chain, so they will analyze the effects of multithreading and system parallelization on the mentioned processing chain. Finally, as a result of this discussion, some conclusions will be gathered regarding some relevant aspects, such as algorithm behavior, execution times and processing performance. Likewise, this document will conclude with the proposal of some future research lines that could continue the research work described in this document.
Resumo:
En este proyecto se han analizado distintas imágenes de fragmentos de rocas de distintas granulometrías correspondientes a una serie de voladuras de una misma cantera. Cada una de las voladuras se componen de 20 imágenes. A posteriori utilizando el programa Split Desktop en su versión 3.1, se delimitaron los fragmentos de roca de los que está compuesta la imagen, obteniéndose posteriormente la curva granulométrica correspondiente a dicha imagen. Una vez se calculan las curvas granulométricas correspondientes a cada imagen, se calcula la curva media de todas ellas, pudiéndose considerar por tanto la curva media de cada voladura. Se han utilizado las distintas soluciones del software, manual, online y automático, para realizar los análisis de dichas imágenes y a posteriori comparar sus resultados. Dichos resultados se muestran a través de una serie de gráficos y tablas que se explican con detalle para la comprensión del estudio. De dichos resultados es posible afirmar que, el tratamiento de imágenes realizado de manera online y automático por Split, desemboca en el mismo resultado, al no haber una diferencia estadística significativa. Por el contrario, el sistema manual es diferente de los otros dos, no pudiéndose afirmar cual es mejor de los dos. El manual depende del operario que trabaje las imágenes y el online de los ajustes realizados y por tanto, ambos tienen ciertas incertidumbres difíciles de solucionar. Abstract In this project, different images of rock fragments of different grain sizes corresponding to a series of blasts from the same quarry have been analyzed. To study each blast, 20 images has been used and studied with the software Split Desktop 3.1. Rock fragments from each image has been delimitated with the software, obtaining a grading curve of each one. Once these curves are calculated, the mean curve of these data set is obtained and can be considered the mean curve of each blast. Different software solutions as manual, online and automatic, has been used for the analysis of these images. Then the results has been compared between them. These results are shown through a series of graphs and tables, that are explained in detail, to enhance the understanding of the study. From these results, it can be said that the image processing with online and automatic options from Split, leads to the same result, after an statistical study. On the contrary, the manual Split mode is different from the others; however is not possible to assert what will be the best. The manual Split mode depends on the operator ability and dedication, although the online mode depends on the software settings, so therefore, both have some uncertainties that are difficult to solve.
Resumo:
En minería, la estimación de la curva granulométrica del escombro de voladura es importante para evaluar el diseño, ejecución y optimización de la misma. Para ello, actualmente se usan sistemas digitales de fotografías que obtienen dicha curva a partir de imágenes tomadas por una cámara. En este proyecto se ha analizado la fragmentación de seis voladuras realizadas en el año 2012 en la cantera “El Aljibe” situada en el término municipal de Almonacid de Toledo con un sistema automático en línea (Split Online) y con un software de otra compañía (WipFrag) que permite la edición manual de las imágenes. Han sido analizadas 120 imágenes de seis voladuras, elegidas aleatoriamente. Tras el estudio granulométrico, se observa que las curvas granulométricas obtenidas con ambos sistemas, estadísticamente, no son la misma en la mayor parte de la curva, por tanto, se analiza una posible relación entre los tamaños característicos X50 y X80, llegando a la conclusión de que ninguno de los sistemas es totalmente fiable, y es necesario calibrar los sistemas con datos de fragmentación reales obtenidos por medio de básculas. Abstract In mining, the estimate of the granulometric curve blasting debris is very important to evaluate the design, implementation and optimization of it. Currently, for the obtaining of this curves are used digital system of pictures taken by a camera. In this project, the fragmentation of six rock blasting were analyzed. The rock blastings are executed in 2012 in the quarry “El Aljibe” located in Almonacid de Toledo, with a automatic online system (Split Online) and a manual editing software (WipFrag). 120 randomly selected pictures have been analyzed. After the granulometric study, it appears that the size distribution curves obtained with both systems, statistically, are not the same, then, a possible relationship between the feature sizes X50 and X80 is analyzed, concluding that none of the systems is fully reliable, and systems must be calibrated with real data fragmentation obtained from data scales.
Resumo:
En las ultimas décadas hemos sufrido un gran cambio en el modo, como en la calidad de Vida en el cual se debe a gran medida al avance tan grande que ha habido en el mundo tecnológico. Alguno de estos avances y en el cual tratara el proyecto son la codificaciones y formato de video. En las décadas que llevamos de televisión en color hay dos formatos de video en los cuales han destacado sobre el resto uno que es el sistema de codificación analógico PAL ,que es el sistema de televisión Analógica que se utilizaba en toda Europa (Exceptuando Francia) y en la mayoría de la población mundial. Por otro lado tenemos el otro sistema de video que es el HD aunque el proyecto lleva 40 años existiendo he tomado una mayor importancia ahora con el cambio que se ha habido de pasar de una televisión analógica a una televisión digital. En este proyecto se creara una herramienta capaz de transformar un video en Formato PAL que es un formato que tiene 720 pixeles de longitud y 576 pixeles de altura al formato de video HD que en su caso tiene las dimensiones 1920x 1080 pixeles de longitud y altura respectivamente.
Resumo:
La reconstrucción y caracterización de las espinas dendríticas es hoy en día un área de trabajo de gran interés en la investigación neurobiológica. Las dendritas son prolongaciones en forma de ramas de la neurona. Las espinas dendríticas se encuentran a lo largo de las dendritas y son las encargadas de transmitir los impulsos electroquímicos al cuerpo de la neurona. El objetivo de este trabajo es desarrollar un algoritmo con el objetivo de mejorar las reconstrucciones 3D de las espinas dendríticas. Se ha utilizado un algoritmo de segmentación basado en los contornos activos morfológicos para analizar las imágenes de partida y conseguir nuevas reconstrucciones 3D fieles a estas imágenes. En este documento presentamos todo el desarrollo necesario para llevar a cabo los objetivos del proyecto. Por último también se presentarán los resultados obtenidos con este método comparándolo con las reconstrucciones de partida. ABSTRACT The reconstruction and characterization of dendritic spines is a hot topic in modern neurobiology research. Dendrites are the branched ramifications of a neuron. Dendritic spines are found along the dendrites and are responsible for transmitting electrochemical signals to the neuron’s main body. The purpose of this work is to develop an algorithm to improve the 3D reconstruction of dendritic spines. We use a segmentation algorithm based on morphological active contours to analyze the images and get new faithful 3D reconstructions of these images. In this document we present all the development necessary to accomplish the project goals. Finally, we will compare present results obtained by this method with the starting reconstructions.
Resumo:
Este proyecto presenta un software para el análisis de imágenes dermatoscópicas correspondiente a lesiones melanocíticas, con el fin de clasificarlas entre lesiones benignas y melanoma. El sistema realiza una segmentación automática de la lesión y la procesa en varas etapas, extrayendo características de relevancia diagnóstica: asimetría, colores, irregularidad del borde, y la presencia de estructuras como redes pigmentadas atípicas o velo azul-blanquecino. Proporciona además una herramienta para el etiquetado manual de estructuras adicionales. La clasificación automática de las lesiones se realiza en base a los métodos de diagnóstico más comúnmente utilizados: las reglas ABCD, Menzies, 7-point checklist, CASH y CHAOS & CLUES. El sistema de clasificación se evalúa sobre una base de datos de imágenes dermatoscópicas, y se realiza una comparativa de los resultados obtenidos por cada método de diagnóstico. ABSTRACT. This project presents a software for the analysis of dermoscopic images of melanocytic lesions, and their classification into benign lesions and melanoma. The system performs automatic segmentation of the lesion and goes through several stages of extraction of certain characteristics relevant to the diagnosis, such as asymmetry, border irregularity, or presence of structures like atypical pigmented network or blue-whitish veil. Automatic classification of the lesions is accomplished by means of the most commonly used diagnostic methods, such as ABCD and Menzies's rules, the 7-point checklist, CASH, and CHAOS & CLUES. The classification system is evaluated by using a dermoscopic image database, and a comparison of the results yielded by the different diagnostic methods is performed.
Resumo:
ImageJ es un programa informático de tratamiento digital de imagen orientado principalmente hacia el ámbito de las ciencias de la salud. Se trata de un software de dominio público y de código abierto desarrollado en lenguaje Java en las instituciones del National Institutes of Health de Estados Unidos. Incluye por defecto potentes herramientas para editar, procesar y analizar imágenes de casi cualquier tipo y formato. Sin embargo, su mayor virtud reside en su extensibilidad: las funcionalidades de ImageJ pueden ampliarse hasta resolver casi cualquier problema de tratamiento digital de imagen mediante macros, scripts y, especialmente, plugins programables en lenguaje Java gracias a la API que ofrece. Además, ImageJ cuenta con repositorios oficiales en los que es posible obtener de forma gratuita macros, scripts y plugins aplicables en multitud de entornos gracias a la labor de la extensa comunidad de desarrolladores de ImageJ, que los depura, mejora y amplia frecuentemente. Este documento es la memoria de un proyecto que consiste en el análisis detallado de las herramientas de tratamiento digital de imagen que ofrece ImageJ. Tiene por objetivo determinar si ImageJ, a pesar de estar más enfocado a las ciencias de la salud, puede resultar útil en el entorno de la Escuela Técnica Superior de Ingeniería y Sistemas de Telecomunicación de la Universidad Politécnica de Madrid, y en tal caso, resaltar las características que pudieran resultar más beneficiosas en este ámbito y servir además como guía introductoria. En las siguientes páginas se examinan una a una las herramientas de ImageJ (versión 1.48q), su funcionamiento y los mecanismos subyacentes. Se sigue el orden marcado por los menús de la interfaz de usuario: el primer capítulo abarca las herramientas destinadas a la manipulación de imágenes en general (menú Image); el segundo, las herramientas de procesado (menú Process); el tercero, las herramientas de análisis (menú Analyze); y el cuarto y último, las herramientas relacionadas con la extensibilidad de ImageJ (menú Plugins). ABSTRACT. ImageJ is a digital image processing computer program which is mainly focused at the health sciences field. It is a public domain, open source software developed in Java language at the National Institutes of Health of the United States of America. It includes powerful built-in tools to edit, process and analyze almost every type of image in nearly every format. However, its main virtue is its extensibility: ImageJ functionalities can be widened to solve nearly every situation found in digital image processing through macros, scripts and, specially, plugins programmed in Java language thanks to the ImageJ API. In addition, ImageJ has official repositories where it is possible to freely get many different macros, scripts and plugins thanks to the work carried out by the ImageJ developers community, which continuously debug, improve and widen them. This document is a report which explains a detailed analysis of all the digital image processing tools offered by ImageJ. Its final goal is to determine if ImageJ can be useful to the environment of Escuela Tecnica Superior de Ingenierfa y Sistemas de Telecomunicacion of Universidad Politecnica de Madrid, in spite of being focused at the health sciences field. In such a case, it also aims to highlight the characteristics which could be more beneficial in this field, and serve as an introductory guide too. In the following pages, all of the ImageJ tools (version 1.48q) are examined one by one, as well as their work and the underlying mechanics. The document follows the order established by the menus in ImageJ: the first chapter covers all the tools destined to manipulate images in general (menu Image); the second one covers all the processing tools (menu Process); the third one includes analyzing tools (menu Analyze); and finally, the fourth one contains all those tools related to ImageJ extensibility (menu Plugins).
Resumo:
La relación entre la ingeniería y la medicina cada vez se está haciendo más estrecha, y debido a esto se ha creado una nueva disciplina, la bioingeniería, ámbito en el que se centra el proyecto. Este ámbito cobra gran interés debido al rápido desarrollo de nuevas tecnologías que en particular permiten, facilitan y mejoran la obtención de diagnósticos médicos respecto de los métodos tradicionales. Dentro de la bioingeniería, el campo que está teniendo mayor desarrollo es el de la imagen médica, gracias al cual se pueden obtener imágenes del interior del cuerpo humano con métodos no invasivos y sin necesidad de recurrir a la cirugía. Mediante métodos como la resonancia magnética, rayos X, medicina nuclear o ultrasonidos, se pueden obtener imágenes del cuerpo humano para realizar diagnósticos. Para que esas imágenes puedan ser utilizadas con ese fin hay que realizar un correcto tratamiento de éstas mediante técnicas de procesado digital. En ése ámbito del procesado digital de las imágenes médicas es en el que se ha realizado este proyecto. Gracias al desarrollo del tratamiento digital de imágenes con métodos de extracción de información, mejora de la visualización o resaltado de rasgos de interés de las imágenes, se puede facilitar y mejorar el diagnóstico de los especialistas. Por todo esto en una época en la que se quieren automatizar todos los procesos para mejorar la eficacia del trabajo realizado, el automatizar el procesado de las imágenes para extraer información con mayor facilidad, es muy útil. Actualmente una de las herramientas más potentes en el tratamiento de imágenes médicas es Matlab, gracias a su toolbox de procesado de imágenes. Por ello se eligió este software para el desarrollo de la parte práctica de este proyecto, su potencia y versatilidad simplifican la implementación de algoritmos. Este proyecto se estructura en dos partes. En la primera se realiza una descripción general de las diferentes modalidades de obtención de imágenes médicas y se explican los diferentes usos de cada método, dependiendo del campo de aplicación. Posteriormente se hace una descripción de las técnicas más importantes de procesado de imagen digital que han sido utilizadas en el proyecto. En la segunda parte se desarrollan cuatro aplicaciones en Matlab para ejemplificar el desarrollo de algoritmos de procesado de imágenes médicas. Dichas implementaciones demuestran la aplicación y utilidad de los conceptos explicados anteriormente en la parte teórica, como la segmentación y operaciones de filtrado espacial de la imagen, así como otros conceptos específicos. Las aplicaciones ejemplo desarrolladas han sido: obtención del porcentaje de metástasis de un tejido, diagnóstico de las deformidades de la columna vertebral, obtención de la MTF de una cámara de rayos gamma y medida del área de un fibroadenoma de una ecografía de mama. Por último, para cada una de las aplicaciones se detallará su utilidad en el campo de la imagen médica, los resultados obtenidos y su implementación en una interfaz gráfica para facilitar su uso. ABSTRACT. The relationship between medicine and engineering is becoming closer than ever giving birth to a recently appeared science field: bioengineering. This project is focused on this subject. This recent field is becoming more and more important due to the fast development of new technologies that provide tools to improve disease diagnosis, with regard to traditional procedures. In bioengineering the fastest growing field is medical imaging, in which we can obtain images of the inside of the human body without need of surgery. Nowadays by means of the medical modalities of magnetic resonance, X ray, nuclear medicine or ultrasound, we can obtain images to make a more accurate diagnosis. For those images to be useful within the medical field, they should be processed properly with some digital image processing techniques. It is in this field of digital medical image processing where this project is developed. Thanks to the development of digital image processing providing methods for data collection, improved visualization or data highlighting, diagnosis can be eased and facilitated. In an age where automation of processes is much sought, automated digital image processing to ease data collection is extremely useful. One of the most powerful image processing tools is Matlab, together with its image processing toolbox. That is the reason why that software was chosen to develop the practical algorithms in this project. This final project is divided into two main parts. Firstly, the different modalities for obtaining medical images will be described. The different usages of each method according to the application will also be specified. Afterwards we will give a brief description of the most important image processing tools that have been used in the project. Secondly, four algorithms in Matlab are implemented, to provide practical examples of medical image processing algorithms. This implementation shows the usefulness of the concepts previously explained in the first part, such as: segmentation or spatial filtering. The particular applications examples that have been developed are: calculation of the metastasis percentage of a tissue, diagnosis of spinal deformity, approximation to the MTF of a gamma camera, and measurement of the area of a fibroadenoma in an ultrasound image. Finally, for each of the applications developed, we will detail its usefulness within the medical field, the results obtained, and its implementation in a graphical user interface to ensure ease of use.
Resumo:
Ampliación de software dedicado al análisis de imágenes mediante la introducción de nuevas opciones en el procesamiento de video digital, mejoras en la interacción con el usuario. Para ello se ha estudiado el funcionamiento de la aplicación, integrando el lenguaje Python como herramienta de gestión y ejecución de la aplicación. En esta parte de la aplicación se ha integrado: - Traducción de la UI a una versión castellana. - Modificación y eliminación de cualquier filtro añadido para el procesamiento de video, no únicamente el último. - Descripciones de puntero y en la barra de estado de elementos de la aplicación. - Iconos en la barra de herramientas de los filtros añadidos más importantes. Por la otra parte, la del tratamiento digital de video, Avisynth se dispone como el eje de estudio, el cuál ejecuta sobre lenguaje de bajo nivel (C++) las operaciones pertinentes a través de librerías de enlace dinámico o *.dll. Las nuevas funcionalidades son: Convolución matricial, filtro de media adaptativa, DCT, ajustes de video generales, en formato RGB o YUV, rotaciones, cambios de perspectiva y filtrado en frecuencia. ABSTRACT. Improvement about a digital image processing software, creating new options in digital video processing or the user interaction. For this porpuse, we have integrated the application language,Python, as the tool to the application management and execution. In this part of the application has been integrated: - Translation of the UI: Spanish version. - Modifying and removing any added filter for video processing, not just the last. - Descriptions for the pointer and the status bar of the application. - New icons on the toolbar of the most important filters added. On the other hand, Avisynth was used tool for the digital video processing, which runs on low-level language (C ++) for a quickly and to improve the video operations. The new introduced filters are: Matrix Convolution, adaptive median filter, DCT, general video settings on RGB or YUV format, rotations, changes in perspective and frequency filtering.
Resumo:
La investigación para el conocimiento del cerebro es una ciencia joven, su inicio se remonta a Santiago Ramón y Cajal en 1888. Desde esta fecha a nuestro tiempo la neurociencia ha avanzado mucho en el desarrollo de técnicas que permiten su estudio. Desde la neurociencia cognitiva hoy se explican muchos modelos que nos permiten acercar a nuestro entendimiento a capacidades cognitivas complejas. Aun así hablamos de una ciencia casi en pañales que tiene un lago recorrido por delante. Una de las claves del éxito en los estudios de la función cerebral ha sido convertirse en una disciplina que combina conocimientos de diversas áreas: de la física, de las matemáticas, de la estadística y de la psicología. Esta es la razón por la que a lo largo de este trabajo se entremezclan conceptos de diferentes campos con el objetivo de avanzar en el conocimiento de un tema tan complejo como el que nos ocupa: el entendimiento de la mente humana. Concretamente, esta tesis ha estado dirigida a la integración multimodal de la magnetoencefalografía (MEG) y la resonancia magnética ponderada en difusión (dMRI). Estas técnicas son sensibles, respectivamente, a los campos magnéticos emitidos por las corrientes neuronales, y a la microestructura de la materia blanca cerebral. A lo largo de este trabajo hemos visto que la combinación de estas técnicas permiten descubrir sinergias estructurofuncionales en el procesamiento de la información en el cerebro sano y en el curso de patologías neurológicas. Más específicamente en este trabajo se ha estudiado la relación entre la conectividad funcional y estructural y en cómo fusionarlas. Para ello, se ha cuantificado la conectividad funcional mediante el estudio de la sincronización de fase o la correlación de amplitudes entre series temporales, de esta forma se ha conseguido un índice que mide la similitud entre grupos neuronales o regiones cerebrales. Adicionalmente, la cuantificación de la conectividad estructural a partir de imágenes de resonancia magnética ponderadas en difusión, ha permitido hallar índices de la integridad de materia blanca o de la fuerza de las conexiones estructurales entre regiones. Estas medidas fueron combinadas en los capítulos 3, 4 y 5 de este trabajo siguiendo tres aproximaciones que iban desde el nivel más bajo al más alto de integración. Finalmente se utilizó la información fusionada de MEG y dMRI para la caracterización de grupos de sujetos con deterioro cognitivo leve, la detección de esta patología resulta relevante en la identificación precoz de la enfermedad de Alzheimer. Esta tesis está dividida en seis capítulos. En el capítulos 1 se establece un contexto para la introducción de la connectómica dentro de los campos de la neuroimagen y la neurociencia. Posteriormente en este capítulo se describen los objetivos de la tesis, y los objetivos específicos de cada una de las publicaciones científicas que resultaron de este trabajo. En el capítulo 2 se describen los métodos para cada técnica que fue empleada: conectividad estructural, conectividad funcional en resting state, redes cerebrales complejas y teoría de grafos y finalmente se describe la condición de deterioro cognitivo leve y el estado actual en la búsqueda de nuevos biomarcadores diagnósticos. En los capítulos 3, 4 y 5 se han incluido los artículos científicos que fueron producidos a lo largo de esta tesis. Estos han sido incluidos en el formato de la revista en que fueron publicados, estando divididos en introducción, materiales y métodos, resultados y discusión. Todos los métodos que fueron empleados en los artículos están descritos en el capítulo 2 de la tesis. Finalmente, en el capítulo 6 se concluyen los resultados generales de la tesis y se discuten de forma específica los resultados de cada artículo. ABSTRACT In this thesis I apply concepts from mathematics, physics and statistics to the neurosciences. This field benefits from the collaborative work of multidisciplinary teams where physicians, psychologists, engineers and other specialists fight for a common well: the understanding of the brain. Research on this field is still in its early years, being its birth attributed to the neuronal theory of Santiago Ramo´n y Cajal in 1888. In more than one hundred years only a very little percentage of the brain functioning has been discovered, and still much more needs to be explored. Isolated techniques aim at unraveling the system that supports our cognition, nevertheless in order to provide solid evidence in such a field multimodal techniques have arisen, with them we will be able to improve current knowledge about human cognition. Here we focus on the multimodal integration of magnetoencephalography (MEG) and diffusion weighted magnetic resonance imaging. These techniques are sensitive to the magnetic fields emitted by the neuronal currents and to the white matter microstructure, respectively. The combination of such techniques could bring up evidences about structural-functional synergies in the brain information processing and which part of this synergy fails in specific neurological pathologies. In particular, we are interested in the relationship between functional and structural connectivity, and how two integrate this information. We quantify the functional connectivity by studying the phase synchronization or the amplitude correlation between time series obtained by MEG, and so we get an index indicating similarity between neuronal entities, i.e. brain regions. In addition we quantify structural connectivity by performing diffusion tensor estimation from the diffusion weighted images, thus obtaining an indicator of the integrity of the white matter or, if preferred, the strength of the structural connections between regions. These quantifications are then combined following three different approaches, from the lowest to the highest level of integration, in chapters 3, 4 and 5. We finally apply the fused information to the characterization or prediction of mild cognitive impairment, a clinical entity which is considered as an early step in the continuum pathological process of dementia. The dissertation is divided in six chapters. In chapter 1 I introduce connectomics within the fields of neuroimaging and neuroscience. Later in this chapter we describe the objectives of this thesis, and the specific objectives of each of the scientific publications that were produced as result of this work. In chapter 2 I describe the methods for each of the techniques that were employed, namely structural connectivity, resting state functional connectivity, complex brain networks and graph theory, and finally, I describe the clinical condition of mild cognitive impairment and the current state of the art in the search for early biomarkers. In chapters 3, 4 and 5 I have included the scientific publications that were generated along this work. They have been included in in their original format and they contain introduction, materials and methods, results and discussion. All methods that were employed in these papers have been described in chapter 2. Finally, in chapter 6 I summarize all the results from this thesis, both locally for each of the scientific publications and globally for the whole work.
Resumo:
La importancia de la Biomasa a nivel mundial, ha llevado a que más de 130 países celebren el protocolo de Kioto sobre el cambio climático dictaminando como objetivo la reducción de las emisiones de seis gases de efecto invernadero y tres gases industriales fluorados, así como la incorporación de la fijación del CO2 como un objetivo dentro de los criterios de gestión de bosques. Entre las metodologías no destructivas para estimación de biomasa, aquí desarrolladas se describen tres técnicas que varios autores han propuesto para calcular los valores de biomasa y carbono, tal como el uso de ecuaciones alométricas por medio de la medición de variables dasométricas como el DAP, la aplicación de la teoría de huecos (v.g. DHP, TRAC), y la obtención de biomasa mediante información radar. Las imágenes radar proporcionan una clara ventaja al poder ser adquiridas en cualquier momento del día e independientemente de las condiciones climatológicas. Se han adquirido dos imágenes de sensores diferentes, tal como ALOSPALSAR que trabaja en la banda L y RADARSAT-2 que trabaja en la banda C, se aplica la metodología descrita por Saatchi et al. (2007), desarrollando los algoritmos semiempíricos propuestos para la estimación de biomasa del fuste (Ws) y biomasa de la copa (Wc), obteniendo los coeficientes a partir de información adquirida en campo. ABSTRACT The importance of biomass worldwide has led to more than 130 countries to celebrate the Kyoto Protocol, aimed at reducing emissions of six greenhouse gases and three fluorinated industrial gases, and the incorporation of the fixation of CO2 as an objective within forest management criteria. Among the non-destructive methods for estimating biomass, three techniques were developed. These have been described by some authors, as the use of allometric equations by measuring forest variables such as the DAP, the application of the Gap Theory (e.g. DHP, TRAC), as well as deriving biomass by radar information. The radar images provide a clear advantage since they can be gathered at any time of the day regardless of the weather conditions. For this purpose, two radar products have acquired from different sensors, such as ALOSPALSAR operating on L frequency band and RADARSAT-2 operating on C frequency band. The methodology applied in this work is described in Saatchi et al. (2007), that develop semiempirical algorithms for estimating stem biomass (Ws) and crown biomass (Wc). The corresponding coefficients are determined by means of regression procedures using field information derived from allometric and radiation measurements.
Resumo:
El presente artículo pretende describir el desarrollo de una nueva metodología no invasiva de documentación digital de petroglifos y pinturas rupestres pertenecientes al paleolítico, a través de técnicas y herramientas del tratamiento digital de imágenes para optimizar materiales y tiempos en la obtención de información gráfica, representativa y de precisión. Abstract: This article aims to describe the development of a new non-invasive methodology, through techniques and tools of digital image processing to optimize materials and time in obtaining graphical representative and accurate information from petroglyphs and rock paintings belonging to Paleolithic.
Resumo:
Nuevas tecnologías aplicadas a la arqueología
Resumo:
El presente Proyecto de Fin de Carrera viene motivado por el conocimiento de la existencia de fenómenos erosivos en la zona de Orgaz - Los Yébenes. El objetivo es el estudio de la distribución de procesos erosivos en el área citada y la relación de las zonas en que estos se producen, con las propiedades analíticas del suelo. La pérdida de suelo por erosión inducida por el hombre, supera a la erosión natural en varios órdenes de magnitud, por lo que cabe considerarla como un grave problema ambiental que propicia la pérdida de fertilidad. Esto es debido a que en los ecosistemas agrarios, sobre todo en cultivos de secano,se han aplicado manejos que han acelerado las tasas de erosión naturales. En los cultivos de secano más extendidos, se ha eliminado toda la cubierta vegetal, se ha compactado el suelo y esquilmado la materia orgánica. Como consecuencia de estos manejos poco respetuosos con el suelo, las tasas de erosión son mayores a las tasas de formación y constituyen un poderoso factor de desertificación. La respuesta erosiva de un determinado ambiente o uso del suelo suele ser bastante diferente según la época del año en la que se produzcan las lluvias,su intensidad y duración, el estado de la vegetación, el tiempo en el que el suelo permanece desnudo tras el levantamiento de la cosecha, etc.… Del uso y gestión que se haga del suelo y de la cubierta vegetal dependerá que, con el tiempo, la erosión potencial no se convierta en erosión actual.