931 resultados para ISM : molecules
Resumo:
Association of class-II phospholipase A(2) (PLA(2)) with aggregated phospholipid substrate results in elevated levels of the Ca2+-dependent hydrolytic activity. The Asp49 residue participates in coordination of the Ca2+ ion cofactor, however, in Lys49-PLA(2) homologues (Lys49-PLA(2)S), substitution of the Asp49 by Lys results in loss of Ca2+ binding and lack of detectable phospholipid hydrolysis. Nevertheless, Lys49-PLA2S cause Ca2+-independent damage of liposome membranes. Bothropstoxin-I is a homodimeric Lys49-PLA(2) from the venom of Bothrops jararacussu, and in fluorescent marker release and dynamic light scattering experiments with DPPC liposomes we demonstrate activation of the Ca2+-independent membrane damaging activity by similar to4 molecules of sodium dodecyl sulphate (SDS) per protein monomer. Activation is accomparlied by significant changes in the intrinsic tryptophan fluorescence emission (ITFE) and near UV circular dichroism (UVCD) spectra of the protein. Subsequent binding of 7-10 SDS molecules results in further alterations in the ITFE and far UVCD spectra. Reduction in the rate of N-bromosuccinimide modification of Trp77 at the dimer interface suggests that initial binding of SDS to this region accompanies the activation of the membrane damaging activity. 1-anilinonaphthalene-8-sulphonic acid binding studies indicate that subsequent SDS binding to the active site is concomitant with the second structural transition. These results provide insights in the structural basis of amphiphile/protein coupling in class-II PLA(2)s. (C) 2004 Published by Elsevier B.V.
Resumo:
We have used near ultraviolet photoacoustic spectroscopy (PAS) over the wavelength range 240-320 nm to investigate the complex formed between the homodimeric bothropstoxin-I, a lysine-49-phospholipase A(2) from the venom of Bothrops jararacussu (BthTx-I), with the anionic amphiphile sodium dodecyl sulfate (SDS). At molar ratios > 10, the complex developed a significant light scatter, accompanied by a decrease in the intrinsic tryptophan fluorescence intensity emission (ITFE) of the protein, and an increase in the near UV-PAS signal. Difference PAS spectroscopy at SDS/BthTx-I ratios < 8 were limited to the region 280-290 nm, suggesting initial SDS binding to the tryptophan 77 located at the dimer interface. At SDS/BthTx-I ratios > 10, the intensity between 260 and 320 nm increases demonstrating that the more widespread tyrosine and phenylalanine residues contribute to the SDS/BthTx-I interaction. PAS signal phase changes at wavelengths specific for each aromatic residue suggest that the Trp77 becomes more buried on SDS binding, and that protein structural changes and dehydration may alter the microenvironments of Tyr and Phe residues. These results demonstrate the potential of near UV-PAS for the investigation of membrane proteins/detergent complexes in which light scatter is significant. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Partial pseudoternary phase diagrams were constructed for soy bean oil (SBO)/surfactant/NaCl aqueous solution systems, at 25 degrees C, using the anionic sodium bis(2-ethylhexyl) sulfosuccinate (ACT) and zwiterionic phosphatidylcholine (PC) or mixtures of these surfactants. The isotropic single phase of water-in-oil (W/O) microemulsions (MEs) is shown in the phase diagram and their viscosity reported. ME samples containing small amount of surfactant exhibit slightly higher viscosity than pure SBO, and were used in the solubilization of small water soluble molecules. NaCl enhances the area of the ME phase and MEs with different surfactant composition exhibit different induction time as obtained from tests of oxidative stability, and so are the MEs enriched with ascorbic acid, folic acid and FeSO4, with the latter exhibiting lower stability. The so prepared enriched soy bean oil has potential application in food industry since the surfactants are food grade. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Starting from a phenomenological Hamiltonian originally written in terms of angular momentum operators we derive a new quantum angle-based Hamiltonian that allows for a discussion on the quantum spin tunneling. The study of the applicability of the present approach, carried out in calculations with a soluble quasi-spin model, shows that we are allowed to use our method in the description of physical systems such as the Mn12-acetate molecule, as well as the octanuclear iron cluster, Fe8, in a reliable way. With the present description the interpretation of the spin tunneling is seen to be direct, the spectra and energy barriers of those systems are obtained, and it is shown that they agree with the experimental ones. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The recent theoretical and experimental activities in positronium (Ps) scattering by atoms and molecules are reviewed with special emphasis at low energies. We critically compare the results of different groups - theoretical and experimental. The theoretical approaches considered include the R-matrix and close-coupling methods applied to Ps-H, Ps-He and Ps-Li scattering, and a coupled-channel approach with a nonlocal model potential for Ps scattering by H, He, H-2, Ne, Ar, Li, Na, K, Rb, Cs and Ps and for pickoff quenching in Ps-He scattering. Results for scattering lengths, partial. total and differential cross-sections as well as resonance and binding energies in different systems are discussed. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Scattering of positronium (Ps) from atoms (H, He, Ne, Ar), molecule (H(2)) and ion (He(+)) have been investigated using a coupled-channel (CC) formalism with a regularised non-local exchange potential. The advantage of using such a regularized exchange potential in the close-coupling formalism and the normalizability aspect of the solution at low energies with a minimum effective coupling are discussed. Results for the elastic and total scattering cross-sections, resonance and binding energies in Ps-H, and pick-off annihilation results in Ps-He are found to be in excellent agreement with measurements and variational predictions. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
The dynamics of stability and collapse of a trapped atomic Bose-Einstein condensate (BEC) coupled to a molecular one is studied using the time-dependent Gross-Pitaevskii (GP) equation including a nonlinear interaction term which can transform two atoms into a molecule and vice versa. We find an interesting oscillation of the number of atoms and molecules for a BEC of fixed mass. This oscillation is a consequence of continuous transformation in the condensate of two atoms into a molecule and vice versa. For the study of collapse an absorptive contact interaction and an imaginary quartic three-body recombination term are included in the GP equation. It is possible to have a collapse of one or both components when one or more of the nonlinear terms in the GP equation are attractive in nature, respectively.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Lectins are mainly described as simple carbohydrate- binding proteins. Previous studies have tried to identify other binding sites, which possible recognize plant hormones, secondary metabolites, and isolated amino acid residues. We report the crystal structure of a lectin isolated from Canavalia gladiata seeds ( CGL), describing a new binding pocket, which may be related to pathogen resistance activity in ConA- like lectins; a site where a non- protein amino- acid, aaminobutyric acid ( Abu), is bound.Results: the overall structure of native CGL and complexed with alpha- methyl- mannoside and Abu have been refined at 2.3 angstrom and 2.31 angstrom resolution, respectively. Analysis of the electron density maps of the CGL structure shows clearly the presence of Abu, which was confirmed by mass spectrometry.Conclusion: the presence of Abu in a plant lectin structure strongly indicates the ability of lectins on carrying secondary metabolites. Comparison of the amino acids composing the site with other legume lectins revealed that this site is conserved, providing an evidence of the biological relevance of this site. This new action of lectins strengthens their role in defense mechanisms in plants.
Resumo:
Objective: the aim of this in vivo study was to evaluate the response of the pulp-dentin complex following application of resin-modified glass-ionomer cement, calcium hydroxide hard-setting cement and EDTA-soluble preparation of dentine matrix proteins (ESDP) in deep cavities prepared in non-human primate teeth. Methods: Eighteen deep Class V buccal cavities were prepared in premolars of four capuccin monkeys. In Groups 1 and 2, the cavity floor was lined with ESDP or a resin-modified glass-ionomer cement (Vitrebond - 3M ESPE), respectively. In Group 3 (control), the cavity was lined with a hard setting calcium hydroxide cement (Dycal - Dentsply). The cavities were subsequently filled with amalgam. After 6 months, the animals were sacrificed and the teeth were prepared for microscopic assessment. Six-micron thick serial sections were stained with H/E, Masson's trichrome and Brown & Brenn techniques. Results: No inflammatory pulpal response was observed for all experimental and control Groups. However, the amount of reactionary dentin deposition differed between groups in the rank order ESDP (Group 1) > calcium hydroxide (Group 3) > resin-modified glass-ionomer (Group 2). These differences were statistically significant. Conclusions: All materials were biocompatible when applied in deep cavities. ESDP stimulated higher deposition of reactionary dentin matrix than Vitrebond and Dycal.
Resumo:
A computer-assisted method for analysing photoacoustic spectra has been developed in the Windows(TM) environment with the use of an easy graphical interface, the computer simulation was carried out with the aim of using the entire expression of the Rosencwaig-Gersho theory, thus permitting multiple applications. The simulation was applied to a system that mimics the electron transfer process in which the concentration of octaethylporphin donor molecules was constant whereas the concentration of duroquinone and 2,3-dichloro-5,6-dicyano-1, l-benzoquinone acceptor molecules varied. The increment of the acceptor concentration influenced the photoacoustic amplitude and phase signals. In the phase signal a significant shift to smaller values was observed, denoting a faster heat generation. The analysis of the photoacoustic signal enabled the determination of the thermal diffusivity, the result obtained through the simulation was about (7 +/- 1) x 10(-7) m(2) s(-1) indicating that changes in the photoacoustic phase signals were due to the electron transfer process rather than changes in the thermal properties of the sample.