938 resultados para INDUCED OXIDATIVE DAMAGE
Resumo:
Oxidative damage to DNA is thought to play a role in carcinogenesis by causing Mutations, and indeed accumulation of oxidized DNA bases has been observed in samples obtained from tumors but not from surrounding tissue within the same patient. Base excision repair (BER) is the main pathway for the repair of oxidized modifications both in nuclear and mitochondrial, DNA. In order to ascertain whether diminished BER capacity might account for increased levels of oxidative DNA damage in cancer cells, the activities of BER enzymes in three different lung cancer cell lines and their non-cancerous counterparts were measured using oligonucleotide substrates with single DNA lesions to assess specific BER enzymes. The activities of four BER enzymes, OGG1, NTH1, UDG and APE1, were compared in mitochondrial and nuclear extracts. For each specific lesion, the repair activities were similar among the three cell lines used. However, the specific activities and cancer versus control comparison differed significantly between the nuclear and mitochondrial compartments. OGG1 activity, as measured by 8-oxodA incision, was upregulated in cancer cell mitochondria but down-regulated in the nucleus when compared to control cells. Similarly, NTH1 activity was also up-regulated in mitochondrial extracts from cancer cells but did not change significantly in the nucleus. Together, these results support the idea that alterations in BER capacity are associated with carcinogenesis.
Resumo:
Antioxidant potential is generally investigated by assaying the ability of a compound to protect biological systems from free radicals. However, non-radical reactive oxygen species can also be harmful. Singlet molecular oxygen ((1)O(2)) is generated by energy transfer to molecular oxygen. The resulting (1)O(2) is able to oxidize the nucleoside 2`-deoxyguanosine (dGuo), which leads to the formation of 8-oxo-7,8-dihydro-2`-deoxyguanosine (8-oxodGuo) and spiroiminodihydantoin 2`-deoxyribonucleoside diastereomers (dSp) in an aqueous solution. The main objective of the present study was to verify whether the presence of flavonoids (flavone, apigenin, quercetin, morin and catechin) at different concentrations could protect dGuo from (1)O(2) damage. Of the tested flavonoids, flavone possessed antioxidant activity, as determined by a decrease in the formation of both products. Apigenin, morin, quercetin and catechin all increased the formation of 8-oxodGuo at a concentration of 100 mu M. The quantification of plasmid strand breaks after treatment with formamidopyrimidine-DNA glycosylase showed that flavone protected and quercetin and catechin enhanced DNA oxidation. Our results show that compounds, such as flavonoids, may affect the product distribution of (1)O(2)-mediated oxidation of dGuo, and, in particular, high concentrations of flavonoids with hydroxyl groups in their structure lead to an increase in the formation of the mutagenic lesion 8-oxodGuo. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We have recently demonstrated that hypertriglyceridemic (HTG) mice present both elevated body metabolic rates and mild mitochondrial uncoupling in the liver owing to stimulated activity of the ATP-sensitive potassium channel (mitoK(ATP)). Because lipid excess normally leads to cell redox imbalance, we examined the hepatic oxidative status in this model. Cell redox imbalance was evidenced by increased total levels of carbonylated proteins, malondialdehydes, and GSSG/GSH ratios in HTG livers compared to wild type. In addition, the activities of the extramitochondrial enzymes NADPH oxidase and xanthine oxidase were elevated in HTG livers. In contrast, Mn-superoxide dismutase activity and content, a mitochondrial matrix marker, were significantly decreased in HTG livers. isolated HTG liver mitochondria presented lower rates of H(2)O(2) production, which were reversed by mitoK(ATP) antagonists. In vivo antioxidant treatment with N-acetylcysteine decreased both mitoKATP activity and metabolic rates in HTG mice. These data indicate that high levels of triglycerides increase reactive oxygen generation by extramitochondrial enzymes that promote MitoK(ATP) activation. The mild uncoupling mediated by mitoK(ATP) increases metabolic rates and protects mitochondria against oxidative damage. Therefore, a biological role for mitoK(ATP) is a redox sensor is shown here for the first time in an in vivo model of systemic and cellular lipid excess, (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Vários estudos têm sugerido que seres vivos podem ser suscetíveis aos campos eletromagnéticos (CEMs). Os supostos efeitos dos Campos Eletromagnéticos de Ultra Alta Freqüência (CEMUAFs) em sistemas biológicos são pouco conhecidos. Os relatos de um possível efeito biológico dependente da alteração de estados de oxidação entre pares de radicais sugerem um mecanismo de transdução orgânica para os campos. Outros trabalhos obtiveram alterações na sinalização celular e defesas antioxidantes após a exposição CEMUAFs e, tais alterações, poderiam ser um agente causador de doenças como, por exemplo, a leucemia infantil, esta já correlacionada com a exposição aos CEMs. Desta forma o objetivo deste estudo foi investigar se o CEMUAF (834 MHz) poderia interferir com o balanço oxidativo de planárias e ratos, assim como, estudar a participação de enzimas responsáveis pela hidrólise de nucleotídeos, enzimas estas reconhecidas por serem influenciadas pela ação de radicais livres. As planárias foram expostas por 1, 3 e 6 dias (8 h/dia). Após a exposição foi feito um homogenato de todo o corpo de cada animal. Foi encontrado um aumento na atividade da superóxido desmutase (SOD) e um decréscimo na atividade da catalase (CAT) e na defesa antioxidante não-enzimática (TRAP) após 6 dias de exposição. Adicionalmente, houve um aumento na freqüência de micronúcleos (MN) após 3 e 6 dias de exposição. Não houve alteração nos parâmetros de dano oxidativo a lipídios (TBARS) e proteínas (Carbonil) em nenhum dos tempos de exposição. Estes resultados sugerem um aumento nos níveis de radicais livres e de danos aos ácidos nucléicos. Estudos posteriores deverão determinar se estes efeitos apresentam ou não associações do tipo causa e efeito. Foram utilizados três modelos com ratos. No primeiro modelo, animais com idades de 30, 80 e 210 dias foram expostos por 6 dias (7:30 h/dia). Não foram encontradas mudanças nos parâmetros de TRAP, TBARS e Carbonil em nenhuma das idades expostas ao CEMUAF. Estes resultados sugerem que os tempos de exposição utilizados não foram suficientes para causar alguma mudança perceptível nos parâmetros de estresse oxidativo. No segundo modelo, utilizou-se o sangue e fígado dos neonatos expostos ao CEMUAF ainda no útero de suas mães durante todo o seu desenvolvimento embrionário (8:30 h/dia). Não foram encontradas mudanças em nenhum parâmetro oxidativo. Foi encontrado um aumento na freqüência de MN nas hemácias, sugerindo um efeito genotóxico da irradiação do celular afetando o tecido hematopoiético dos fetos. No terceiro modelo, utilizou-se o sangue de ratos adultos (180 dias) expostos por 12 dias (8:30 h/dia). Os níveis da hidrólise de ATP e ADP estavam aumentados no grupo irradiado. Nenhum efeito foi observado nas atividades da SOD e da CAT, sugerindo nenhuma participação de radicais livres nestes resultados. Ainda são necessários muitíssimos estudos para determinar quais os mecanismos transdutores dos CEMUAFs em sistemas biológicos e de que forma esta interação ocorre, porém estes resultados sugerem: (a) um papel para os radicais livres sobre, pelo menos, alguns dos efeitos atribuídos aos CEMUAFs e (b) que os organismos em fase de formação podem ser mais sensíveis aos campos. Por fim, sugerimos que sistemas biológicos podem sofrer a ação da irradiação com uma quantidade de energia muito menor do que a esperada para promover algum efeito no metabolismo.
Resumo:
Reactive oxygen species (ROS) are produced by aerobic metabolism and react with biomolecules, such as lipids, proteins and DNA. In high concentration, they lead to oxidative stress. Among ROS, singlet oxygen (1O2) is one of the main ROS involved in oxidative stress and is one of the most reactive forms of molecular oxygen. The exposure of some dyes, such as methylene blue (MB) to light (MB+VL), is able to generate 1O2 and it is the principle involved in photodynamic therapy (PDT). 1O2 e other ROS have caused toxic and carcinogenic effects and have been associated with ageing, neurodegenerative diseases and cancer. Oxidative DNA damage is mainly repaired by base excision repair (BER) pathway. However, recent studies have observed the involvement of nucleotide excision repair (NER) factors in the repair of this type of injury. One of these factors is the Xeroderma Pigmentosum Complementation Group A (XPA) protein, which acts with other proteins in DNA damage recognition and in the recruitment of other repair factors. Moreover, oxidative agents such as 1O2 can induce gene expression. In this context, this study aimed at evaluating the response of XPA-deficient cells after treatment with photosensitized MB. For this purpose, we analyzed the cell viability and occurrence of oxidative DNA damage in cells lines proficient and deficient in XPA after treatment with MB+VL, and evaluated the expression of this enzyme in proficient and complemented cells. Our results indicate an increased resistance to treatment of complemented cells and a higher level of oxidative damage in the deficient cell lines. Furthermore, the treatment was able to modulate the XPA expression up to 24 hours later. These results indicate a direct evidence for the involvement of NER enzymes in the repair of oxidative damage. Besides, a better understanding of the effects of PDT on the induction of gene expression could be provided
Resumo:
Human multipotent mesenchymal stromal cells (MSCs), also known as mesenchymal stem cells, have become an important and attractive therapeutic tool since they are easily isolated and cultured, have in vitro expansion potential, substantial plasticity and secrete bioactive molecules that exert trophic effects. The human umbilical cord as a cell source for cell therapy will help to avoid several ethical, political, religious and technical issues. One of the main issues with SC lines from different sources, mainly those of embryonic origin, is the possibility of chromosomal alterations and genomic instability during in vitro expansion. Cells isolated from one umbilical cord exhibited a rare balanced paracentric inversion, likely a cytogenetic constitutional alteration, karyotype: 46,XY,inv(3)(p13p25~26). Important genes related to cancer predisposition and others involved in DNA repair are located in 3p25~26. Titanium is an excellent biomaterial for bone-implant integration; however, the use can result in the generation of particulate debris that can accumulate in the tissues adjacent to the prosthesis, in the local bone marrow, in the lymph nodes, liver and spleen. Subsequently may elicit important biological responses that aren´t well studied. In this work, we have studied the genetic stability of MSC isolated from the umbilical cord vein during in vitro expansion, after the cryopreservation, and under different concentrations and time of exposition to titanium microparticles. Cells were isolated, in vitro expanded, demonstrated capacity for osteogenic, adipogenic and chondrogenic differentiation and were evaluated using flow cytometry, so they met the minimum requirements for characterization as MSCs. The cells were expanded under different concentrations and time of exposition to titanium microparticles. The genetic stability of MSCs was assessed by cytogenetic analysis, fluorescence in situ hybridization (FISH) and analysis of micronucleus and other nuclear alterations (CBMN). The cells were able to internalize the titanium microparticles, but MSCs preserve their morphology, differentiation capacity and surface marker expression profiles. Furthermore, there was an increase in the genomic instability after long time of in vitro expansion, and this instability was greater when cells were exposed to high doses of titanium microparticles that induced oxidative stress. It is necessary always assess the risks/ benefits of using titanium in tissue therapy involving MSCs, considering the biosafety of the use of bone regeneration using titanium and MSCs. Even without using titanium, it is important that the therapeutic use of such cells is based on analyzes that ensure quality, security and cellular stability, with the standardization of quality control programs appropriate. In conclusion, it is suggested that cytogenetic analysis, FISH analysis and the micronucleus and other nuclear alterations are carried out in CTMH before implanting in a patient
Resumo:
Schistosomiasis is an ancient disease caused by helminth Schistosoma mansoni and is a public health problem in Brazil. The granulomatous lesion, typical of the disease, associates itself with increase in the oxidative damage through the generation of free radicals. The aim of this work was to evaluate the occurrence of changes in parameters oxidant / antioxidant that are part of the human defense system, and observe whether they would cause oxidative stress in subjects with schistosomiasis. Moreover, correlating with some biochemical and hematological parameters. Two groups were selected for study, consisting of individuals of both sexes, aged between 16 and 30 years. A control group, formed by individuals without schistosomiasis (n = 30) and a test group, formed by individuals with schistosomiasis (n = 30). The evaluation of lipid peroxidation in plasma was performed by determination of malondialdehyde and antioxidant defense by the quantification of reduced glutathione and catalase activity. For the parameters that assess oxidative stress, the results showed a decrease in the content of reduced glutathione and no change in the activity of catalase, with an increase in the value of malondialdehyde. Therefore, the data found suggest the occurrence of oxidative stress in subjects with schistosomiasis. Of the parameters that assess hepatic function, only levels of aspartate aminotransferase have been high, while there was a decrease of bilirubine. There was a significant change in the lipid profile (p <0.5), however with regard to the renal function of patients, there was a decrease in creatinine. The assessment hematological, made through hemogram and the quantification of hemoglobin, shows increase of eosinophils individuals in the group test, which can be related to the presence of the parasite. The amendments suggest the involvement of oxidative stress in the pathophysiology of this disease
Resumo:
Post-menopause is a period of women s life cycle that is characterized by estrogen depletion and therefore increasing cardiovascular diseases, neurodegenerative disorders, urogenital atrophy, osteoporosis, hot flushes and sexual discomfort incidences. Estrogen is a hormone with comfirmed antioxidant action and its depletion is related to oxidative stress instalation and damaging various important biomolecules. Regular physical activity has been identified as a factor involved in reducing women s post-menopausal complications in addition to improving antioxidant defense by reducing the oxidative damage and consequently improving life s quality in this part of the population. This study aims to evaluate the influence of hypoestrogenism in antioxidant adaptation due to regular exercise, by determining reduced glutathione (GSH) and Thiobarbituric Acid Reactive Substances (SRAT) concentrations and antioxidant enzymes glutathione peroxidase (GPx), Superoxide Dismutase (SOD) and Catalase (CAT) activities in blood, brain and liver of rats. To achieve this goal we used 50 Wistar rats, weighing 180-250g which were divided into two groups, control - GC (25) and ooforectomized - GO (25). Each group was subdivided into five subgroups: Not-trained - S (5), Not-trained Acute Exercise - SEA (5), regular exercise 30 days - E30 (5), regular exercise 60 days - E60 (5) and regular exercise 90 days - E90 (5). Each of the three subgroups exercised regularly was subjected to acute exercise on the eve and the day of sacrifice to collect biological samples of blood, liver and brain and subsequent determination of SRAT concentration, GSH content and antioxidant enzymes GPx, SOD and CAT activities. The results indicated that the sedentary animals acutely exercised presented oxidative stress and regular physical activity led to antioxidant adaptation. In ooforectomized group the antioxidant adaptation seen in control animals showed to be impaired. Unlike the results from blood and liver, in brain there was a shield against oxidative damage originated by the exercise and that hypoestrogenism led to a loss of this natural antioxidant potential. Therefore, hypoestrogenism interferes negatively in antioxidant adaptation due to regular exercise
Resumo:
There is abundant evidence that reactive oxygen species are implicated in several physiological and pathological processes. To protect biological targets from oxidative damage. antioxidants must react with radicals and other reactive species faster than biological substrates do. The aim of the present study was to determine the in vitro antioxidant activity of aqueous extracts from leaves of Bauhinia forficata Link (Fabaceae - Caesalpinioideae) and Cissus sicyoides L. (Vitaceae) (two medicinal plants used popularly in the control of diabetes mellitus), using several different assay systems, namely, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) decolorization. superoxide anion radical (O-2 center dot-) scavenging and myeloperoxidase (MPO) activity. In the ABTS assay for total antioxidant activity, B. forficata showed IC50 8.00 +/- 0.07 mu g/mL, while C. sicyoides showed IC50 13.0 +/- 0.2 mu g/mL. However, the extract of C. sicyoides had a stronger effect on O-2 center dot- (IC50 60.0 +/- 2.3 mu p/mL) than the extract of B. forficata (IC50 90.0 +/- 4.4 mu g/mL). B. forficata also had a stronger inhibitory effect on MPO activity, as measured by guaiacol oxidation, than C. sicyoides. These results indicate that aqueous extracts of leaves of B. forficata and C. sicyoides are a potential source of natural antioxidants and may be helpful in the prevention of diabetic complications associated with oxidative stress.
Resumo:
Exercise-induced muscle damage mainly affects individuals who returned to physical activity after a time without practicing it or had some kind of exhaustive exercise, particularly eccentric exercise. To evaluate the effect of cryotherapy and laser therapy in response to muscle damage induced by eccentric exercise on the biceps muscle. This was a randomized clinical trial consisting of 60 female subjects. All subjects initially underwent an evaluation consisting of perimetry, measurement of pain sensation (via algometry and visual analogue scale), electromyography and dynamometry. Then the subjects performed an exercise protocol on the isokinetic dynamometer consisting of 2 sets of 10 eccentric elbow flexors contraction at 60 °/s. Completed this protocol, an intervention was held according to a previously random group distribution: control group (no intervention), cryotherapy group and laser therapy group. Finally, subjects were re-evaluated immediately and 48 hours after the intervention protocol, except for Visual Analogue Scale (VAS), which was also evaluated 24 hours after exercise. The circumference of the limb, the pain sensation (VAS and algometry), the muscle activation amplitude (via Root Mean Square - RMS), median frequency, peak torque normalized per body weight, average peak torque, power and work were analyzed. The median frequency immediately after the intervention protocol on the cryotherapy group was the only variable that showed inter and intra-group differences; the remaining variables showed only intragroup differences. The perimetry values did not change immediately after the protocol on the groups which underwent cryotherapy and laser therapy, however, there was an increase after 48 hours; algometry values decreased in all groups for 48 hours and the VAS values increased 24 and 48 hours also for all groups. Regarding RMS no significant change was observed. For dynamometry, peak torque normalized per body weight and average peak torque had a similar behavior, with a reduction in the post protocol that has remained after 48 hours. For the power and work, a decrease was observed immediately after the protocol with a further reduction after 48 hours. Cryotherapy and laser therapy does not alter the muscle damage response, except for the perimetry values immediately after exercise.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Confeccionou-se um microarranjo de tecido (TMA) com 146 amostras de lesões prostáticas caninas. Este continha 17,2% de hiperplasia prostática benigna (HPB), 32,4% de atrofia inflamatória proliferativa (PIA), 2,6% de prostatite, 8,6% de focos de neoplasia intraepitelial prostática (PIN), 29,1% de carcinomas e 9,3% de próstatas normais. Cortes histológicos sequenciais foram feitos e utilizados para reação de imunoistoquímica com os anticorpos primários anti-p-53, anti-NOS-2 e anti-GSTP. Avaliou-se de cada core o escore de células marcadas para cada anticorpo utilizado. Os resultados foram tabulados por grupo diagnóstico e submetidos ao teste Tuckey. Os carcinomas prostáticos do cão e a PIA apresentaram maior número de amostras (41) com mais de 75% das células positivas para NOS-2, demonstrando a influência do estresse oxidativo no desenvolvimento dessas lesões. As próstatas normais e as afecções desta glândula, HPB, PIA, PIN, prostatite e carcinoma, expressaram a proteína GSTP-1, o que conferiu proteção ao tecido prostático canino a danos oxidativos. A proteína p53 estava presente em todas as amostras estudadas, incluindo o tecido prostático normal, porém as lesões prostáticas apresentaram maior número de amostras com escores mais elevados de marcação (escores três e quatro), presente em 95% dos focos de PIA e carcinoma. Concluiu-se que o aumento de expressão de óxido nítrico nas lesões prostáticas no cão e a expressão de GSTP-1 podem ter protegido o tecido prostático canino e que a expressão de p53 foi positiva e uniforme nas próstatas normais e com lesões hiperplásicas e displásicas.
Resumo:
Annatto (Bixa orellana L.) is a natural food colorant extensively used in many processed foods, especially dairy products. The lower cost of production and the low toxicity, make annatto a very attractive and convenient pigment in substitution to the many synthetic colorants. In the present study we investigate the carcinogenic and anticarcinogenic effects of dietary annatto in Wistar rat liver using the preneoplastic glutathione S-transferase (GST-P) foci and DNA damage biomarkers. Annatto, containing 5% bixin, was administered in the diet at concentrations of 20, 200, and 1000 ppm (0.07; 0.80 and 4.23 bixin/kg body wt/day, respectively), continuously during 2 weeks before, or 8 weeks after DEN treatment (200 mg/kg body wt, i.p.), to evaluate its effect on the liver-carcinogenesis medium-term bioassay. The comet assay was used to investigate the modifying potential of annatto on DEN (20 mg/kg body wt)-induced DNA damage. The results showed that annatto was neither genotoxic nor carcinogenic at the highest concentration tested (1000 ppm). No protective effects were also observed in both GST-P foci development and comet assays. In conclusion, in such experimental conditions, annatto shows no hepatocarcinogenic effect or modifying potential against DEN-induced DNA damage and preneoplastic foci in the rat liver. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Ginkgo biloba (EGb) has been proposed as a promising candidate for cancer chemoprevention and has shown protective effects on the liver against chemically induced oxidative injury and fibrosis. The potential beneficial effects of EGb were investigated in two rat liver carcinogenesis bioassays induced by diethylnitrosamine (DEN). In a short-term study for anti-initiating screening, male Wistar rats were fed a basal diet or supplemented diet with 500 or 1000 ppm EGb and initiated 14 days later with a single dose of DEN (100 mg/kg i.p.). The respective groups were killed 24 h or 2 weeks after DEN-initiation. Liver samples were collected for the analysis of proliferating cell nuclear antigen (PCNA), transforming growth factor alpha (TGF-alpha), p53, apoptosis and induction of single hepatocytes and minifoci positive for the enzyme glutathione S-transferase P-form (GST-P). In a medium-term study for anti-promoting screening, the animals received a single dose of DEN (200 mg/kg i.p.) and, 2 weeks later, were fed a basal diet or supplemented diet with 500 or 1000 ppm EGb for 6 weeks. All animals underwent 70% partial hepatectomy (PH) at week 3 and killed at week 8. Liver samples were colleted to analyze development of preneoplastic foci of altered hepatocytes (FAH) expressing GST-P. In the short-term study, pretreatment of rats with 1000 ppm EGb significantly reduced the rates of cell proliferation, apoptosis and p53, TGF-a immunoreactivity and the number of GST-P-positive hepatocytes. In the medium-term study, EGb treatment during the post-initiation stage failed to reduce the development of DEN-induced GST-P-positive foci. Thus, EGb presented inhibitory actions during initiation but not promotion of rat liver carcinogenesis induced by DEN. (C) 2008 Elsevier B.V. All rights reserved.