929 resultados para INDIVIDUAL SPATIAL CHOICE
Resumo:
Alternative sports are fast becoming the physical activity of choice. Participation rates are even outstripping more traditional activities such as golf. At their most extreme there is no second chance, the most likely outcome of a mismanaged error or accident is death. At this level participants enjoy activities such as B.A.S.E. (Buildings, Antennae, Space, Earth) jumping, big wave surfing, waterfall kayaking, extreme skiing, rope-free climbing and extreme mountaineering. Probably the most common explanation for participation in extreme sports is the notion that participation is just a matter of some people‟s need to take unnecessary risks. This study reports on findings that indicate a more positive experience. A phenomenological method was used via unstructured interviews with 15 extreme sports participants (ages 30 – 72 years) and other firsthand accounts. Extreme sport participants directly related their experience to personal transformations that spill over to life in general. Athletes report feelings of deep psychological wellbeing and meaningfulness. The extreme sport experience enables a participant to break through personal barriers and develop an understanding of their own resourcefulness and emotional, cognitive, physical and spiritual capabilities. Furthermore such a breakthrough also seems to trigger a change in personal philosophy or view on life. The extreme sport experience transforms a participant though not in terms of working towards an external (social or cultural) perception of identity or towards some constructed perception of an ideal self, but by touching something within.
Resumo:
Purpose: This study explored the spatial distribution of notified cryptosporidiosis cases and identified major socioeconomic factors associated with the transmission of cryptosporidiosis in Brisbane, Australia. Methods: We obtained the computerized data sets on the notified cryptosporidiosis cases and their key socioeconomic factors by statistical local area (SLA) in Brisbane for the period of 1996 to 2004 from the Queensland Department of Health and Australian Bureau of Statistics, respectively. We used spatial empirical Bayes rates smoothing to estimate the spatial distribution of cryptosporidiosis cases. A spatial classification and regression tree (CART) model was developed to explore the relationship between socioeconomic factors and the incidence rates of cryptosporidiosis. Results: Spatial empirical Bayes analysis reveals that the cryptosporidiosis infections were primarily concentrated in the northwest and southeast of Brisbane. A spatial CART model shows that the relative risk for cryptosporidiosis transmission was 2.4 when the value of the social economic index for areas (SEIFA) was over 1028 and the proportion of residents with low educational attainment in an SLA exceeded 8.8%. Conclusions: There was remarkable variation in spatial distribution of cryptosporidiosis infections in Brisbane. Spatial pattern of cryptosporidiosis seems to be associated with SEIFA and the proportion of residents with low education attainment.
Resumo:
Suicide has drawn much attention from both the scientific community and the public. Examining the impact of socio-environmental factors on suicide is essential in developing suicide prevention strategies and interventions, because it will provide health authorities with important information for their decision-making. However, previous studies did not examine the impact of socio-environmental factors on suicide using a spatial analysis approach. The purpose of this study was to identify the patterns of suicide and to examine how socio-environmental factors impact on suicide over time and space at the Local Governmental Area (LGA) level in Queensland. The suicide data between 1999 and 2003 were collected from the Australian Bureau of Statistics (ABS). Socio-environmental variables at the LGA level included climate (rainfall, maximum and minimum temperature), Socioeconomic Indexes for Areas (SEIFA) and demographic variables (proportion of Indigenous population, unemployment rate, proportion of population with low income and low education level). Climate data were obtained from Australian Bureau of Meteorology. SEIFA and demographic variables were acquired from ABS. A series of statistical and geographical information system (GIS) approaches were applied in the analysis. This study included two stages. The first stage used average annual data to view the spatial pattern of suicide and to examine the association between socio-environmental factors and suicide over space. The second stage examined the spatiotemporal pattern of suicide and assessed the socio-environmental determinants of suicide, using more detailed seasonal data. In this research, 2,445 suicide cases were included, with 1,957 males (80.0%) and 488 females (20.0%). In the first stage, we examined the spatial pattern and the determinants of suicide using 5-year aggregated data. Spearman correlations were used to assess associations between variables. Then a Poisson regression model was applied in the multivariable analysis, as the occurrence of suicide is a small probability event and this model fitted the data quite well. Suicide mortality varied across LGAs and was associated with a range of socio-environmental factors. The multivariable analysis showed that maximum temperature was significantly and positively associated with male suicide (relative risk [RR] = 1.03, 95% CI: 1.00 to 1.07). Higher proportion of Indigenous population was accompanied with more suicide in male population (male: RR = 1.02, 95% CI: 1.01 to 1.03). There was a positive association between unemployment rate and suicide in both genders (male: RR = 1.04, 95% CI: 1.02 to 1.06; female: RR = 1.07, 95% CI: 1.00 to 1.16). No significant association was observed for rainfall, minimum temperature, SEIFA, proportion of population with low individual income and low educational attainment. In the second stage of this study, we undertook a preliminary spatiotemporal analysis of suicide using seasonal data. Firstly, we assessed the interrelations between variables. Secondly, a generalised estimating equations (GEE) model was used to examine the socio-environmental impact on suicide over time and space, as this model is well suited to analyze repeated longitudinal data (e.g., seasonal suicide mortality in a certain LGA) and it fitted the data better than other models (e.g., Poisson model). The suicide pattern varied with season and LGA. The north of Queensland had the highest suicide mortality rate in all the seasons, while there was no suicide case occurred in the southwest. Northwest had consistently higher suicide mortality in spring, autumn and winter. In other areas, suicide mortality varied between seasons. This analysis showed that maximum temperature was positively associated with suicide among male population (RR = 1.24, 95% CI: 1.04 to 1.47) and total population (RR = 1.15, 95% CI: 1.00 to 1.32). Higher proportion of Indigenous population was accompanied with more suicide among total population (RR = 1.16, 95% CI: 1.13 to 1.19) and by gender (male: RR = 1.07, 95% CI: 1.01 to 1.13; female: RR = 1.23, 95% CI: 1.03 to 1.48). Unemployment rate was positively associated with total (RR = 1.40, 95% CI: 1.24 to 1.59) and female (RR=1.09, 95% CI: 1.01 to 1.18) suicide. There was also a positive association between proportion of population with low individual income and suicide in total (RR = 1.28, 95% CI: 1.10 to 1.48) and male (RR = 1.45, 95% CI: 1.23 to 1.72) population. Rainfall was only positively associated with suicide in total population (RR = 1.11, 95% CI: 1.04 to 1.19). There was no significant association for rainfall, minimum temperature, SEIFA, proportion of population with low educational attainment. The second stage is the extension of the first stage. Different spatial scales of dataset were used between the two stages (i.e., mean yearly data in the first stage, and seasonal data in the second stage), but the results are generally consistent with each other. Compared with other studies, this research explored the variety of the impact of a wide range of socio-environmental factors on suicide in different geographical units. Maximum temperature, proportion of Indigenous population, unemployment rate and proportion of population with low individual income were among the major determinants of suicide in Queensland. However, the influence from other factors (e.g. socio-culture background, alcohol and drug use) influencing suicide cannot be ignored. An in-depth understanding of these factors is vital in planning and implementing suicide prevention strategies. Five recommendations for future research are derived from this study: (1) It is vital to acquire detailed personal information on each suicide case and relevant information among the population in assessing the key socio-environmental determinants of suicide; (2) Bayesian model could be applied to compare mortality rates and their socio-environmental determinants across LGAs in future research; (3) In the LGAs with warm weather, high proportion of Indigenous population and/or unemployment rate, concerted efforts need to be made to control and prevent suicide and other mental health problems; (4) The current surveillance, forecasting and early warning system needs to be strengthened, to trace the climate and socioeconomic change over time and space and its impact on population health; (5) It is necessary to evaluate and improve the facilities of mental health care, psychological consultation, suicide prevention and control programs; especially in the areas with low socio-economic status, high unemployment rate, extreme weather events and natural disasters.
Resumo:
A major focus of research in nanotechnology is the development of novel, high throughput techniques for fabrication of arbitrarily shaped surface nanostructures of sub 100 nm to atomic scale. A related pursuit is the development of simple and efficient means for parallel manipulation and redistribution of adsorbed atoms, molecules and nanoparticles on surfaces – adparticle manipulation. These techniques will be used for the manufacture of nanoscale surface supported functional devices in nanotechnologies such as quantum computing, molecular electronics and lab-on-achip, as well as for modifying surfaces to obtain novel optical, electronic, chemical, or mechanical properties. A favourable approach to formation of surface nanostructures is self-assembly. In self-assembly, nanostructures are grown by aggregation of individual adparticles that diffuse by thermally activated processes on the surface. The passive nature of this process means it is generally not suited to formation of arbitrarily shaped structures. The self-assembly of nanostructures at arbitrary positions has been demonstrated, though these have typically required a pre-patterning treatment of the surface using sophisticated techniques such as electron beam lithography. On the other hand, a parallel adparticle manipulation technique would be suited for directing the selfassembly process to occur at arbitrary positions, without the need for pre-patterning the surface. There is at present a lack of techniques for parallel manipulation and redistribution of adparticles to arbitrary positions on the surface. This is an issue that needs to be addressed since these techniques can play an important role in nanotechnology. In this thesis, we propose such a technique – thermal tweezers. In thermal tweezers, adparticles are redistributed by localised heating of the surface. This locally enhances surface diffusion of adparticles so that they rapidly diffuse away from the heated regions. Using this technique, the redistribution of adparticles to form a desired pattern is achieved by heating the surface at specific regions. In this project, we have focussed on the holographic implementation of this approach, where the surface is heated by holographic patterns of interfering pulsed laser beams. This implementation is suitable for the formation of arbitrarily shaped structures; the only condition is that the shape can be produced by holographic means. In the simplest case, the laser pulses are linearly polarised and intersect to form an interference pattern that is a modulation of intensity along a single direction. Strong optical absorption at the intensity maxima of the interference pattern results in approximately a sinusoidal variation of the surface temperature along one direction. The main aim of this research project is to investigate the feasibility of the holographic implementation of thermal tweezers as an adparticle manipulation technique. Firstly, we investigate theoretically the surface diffusion of adparticles in the presence of sinusoidal modulation of the surface temperature. Very strong redistribution of adparticles is predicted when there is strong interaction between the adparticle and the surface, and the amplitude of the temperature modulation is ~100 K. We have proposed a thin metallic film deposited on a glass substrate heated by interfering laser beams (optical wavelengths) as a means of generating very large amplitude of surface temperature modulation. Indeed, we predict theoretically by numerical solution of the thermal conduction equation that amplitude of the temperature modulation on the metallic film can be much greater than 100 K when heated by nanosecond pulses with an energy ~1 mJ. The formation of surface nanostructures of less than 100 nm in width is predicted at optical wavelengths in this implementation of thermal tweezers. Furthermore, we propose a simple extension to this technique where spatial phase shift of the temperature modulation effectively doubles or triples the resolution. At the same time, increased resolution is predicted by reducing the wavelength of the laser pulses. In addition, we present two distinctly different, computationally efficient numerical approaches for theoretical investigation of surface diffusion of interacting adparticles – the Monte Carlo Interaction Method (MCIM) and the random potential well method (RPWM). Using each of these approaches we have investigated thermal tweezers for redistribution of both strongly and weakly interacting adparticles. We have predicted that strong interactions between adparticles can increase the effectiveness of thermal tweezers, by demonstrating practically complete adparticle redistribution into the low temperature regions of the surface. This is promising from the point of view of thermal tweezers applied to directed self-assembly of nanostructures. Finally, we present a new and more efficient numerical approach to theoretical investigation of thermal tweezers of non-interacting adparticles. In this approach, the local diffusion coefficient is determined from solution of the Fokker-Planck equation. The diffusion equation is then solved numerically using the finite volume method (FVM) to directly obtain the probability density of adparticle position. We compare predictions of this approach to those of the Ermak algorithm solution of the Langevin equation, and relatively good agreement is shown at intermediate and high friction. In the low friction regime, we predict and investigate the phenomenon of ‘optimal’ friction and describe its occurrence due to very long jumps of adparticles as they diffuse from the hot regions of the surface. Future research directions, both theoretical and experimental are also discussed.
Relative income, happiness, and utility : an explanation for the Easterlin paradox and other puzzles
Resumo:
The well-known Easterlin paradox points out that average happiness has remained constant over time despite sharp rises in GNP per head. At the same time, a micro literature has typically found positive correlations between individual income and individual measures of subjective well-being. This paper suggests that these two findings are consistent with the presence of relative income terms in the utility function. Income may be evaluated relative to others (social comparison) or to oneself in the past (habituation). We review the evidence on relative income from the subjective well-being literature. We also discuss the relation (or not) between happiness and utility, and discuss some nonhappiness research (behavioral, experimental, neurological) related to income comparisons. We last consider how relative income in the utility function can affect economic models of behavior in the domains of consumption, investment, economic growth, savings, taxation, labor supply, wages, and migration.
Resumo:
Listing of Asia-Pacific Award winners and award nomination documentation for APSEA education an professional development, includes acceptance speech and photos
Resumo:
Background: Reducing rates of healthcare acquired infection has been identified by the Australian Commission on Safety and Quality in Health Care as a national priority. One of the goals is the prevention of central venous catheter-related bloodstream infection (CR-BSI). At least 3,500 cases of CR-BSI occur annually in Australian hospitals, resulting in unnecessary deaths and costs to the healthcare system between $25.7 and $95.3 million. Two approaches to preventing these infections have been proposed: use of antimicrobial catheters (A-CVCs); or a catheter care and management ‘bundle’. Given finite healthcare budgets, decisions about the optimal infection control policy require consideration of the effectiveness and value for money of each approach. Objectives: The aim of this research is to use a rational economic framework to inform efficient infection control policy relating to the prevention of CR-BSI in the intensive care unit. It addresses three questions relating to decision-making in this area: 1. Is additional investment in activities aimed at preventing CR-BSI an efficient use of healthcare resources? 2. What is the optimal infection control strategy from amongst the two major approaches that have been proposed to prevent CR-BSI? 3. What uncertainty is there in this decision and can a research agenda to improve decision-making in this area be identified? Methods: A decision analytic model-based economic evaluation was undertaken to identify an efficient approach to preventing CR-BSI in Queensland Health intensive care units. A Markov model was developed in conjunction with a panel of clinical experts which described the epidemiology and prognosis of CR-BSI. The model was parameterised using data systematically identified from the published literature and extracted from routine databases. The quality of data used in the model and its validity to clinical experts and sensitivity to modelling assumptions was assessed. Two separate economic evaluations were conducted. The first evaluation compared all commercially available A-CVCs alongside uncoated catheters to identify which was cost-effective for routine use. The uncertainty in this decision was estimated along with the value of collecting further information to inform the decision. The second evaluation compared the use of A-CVCs to a catheter care bundle. We were unable to estimate the cost of the bundle because it is unclear what the full resource requirements are for its implementation, and what the value of these would be in an Australian context. As such we undertook a threshold analysis to identify the cost and effectiveness thresholds at which a hypothetical bundle would dominate the use of A-CVCs under various clinical scenarios. Results: In the first evaluation of A-CVCs, the findings from the baseline analysis, in which uncertainty is not considered, show that the use of any of the four A-CVCs will result in health gains accompanied by cost-savings. The MR catheters dominate the baseline analysis generating 1.64 QALYs and cost-savings of $130,289 per 1.000 catheters. With uncertainty, and based on current information, the MR catheters remain the optimal decision and return the highest average net monetary benefits ($948 per catheter) relative to all other catheter types. This conclusion was robust to all scenarios tested, however, the probability of error in this conclusion is high, 62% in the baseline scenario. Using a value of $40,000 per QALY, the expected value of perfect information associated with this decision is $7.3 million. An analysis of the expected value of perfect information for individual parameters suggests that it may be worthwhile for future research to focus on providing better estimates of the mortality attributable to CR-BSI and the effectiveness of both SPC and CH/SSD (int/ext) catheters. In the second evaluation of the catheter care bundle relative to A-CVCs, the results which do not consider uncertainty indicate that a bundle must achieve a relative risk of CR-BSI of at least 0.45 to be cost-effective relative to MR catheters. If the bundle can reduce rates of infection from 2.5% to effectively zero, it is cost-effective relative to MR catheters if national implementation costs are less than $2.6 million ($56,610 per ICU). If the bundle can achieve a relative risk of 0.34 (comparable to that reported in the literature) it is cost-effective, relative to MR catheters, if costs over an 18 month period are below $613,795 nationally ($13,343 per ICU). Once uncertainty in the decision is considered, the cost threshold for the bundle increases to $2.2 million. Therefore, if each of the 46 Level III ICUs could implement an 18 month catheter care bundle for less than $47,826 each, this approach would be cost effective relative to A-CVCs. However, the uncertainty is substantial and the probability of error in concluding that the bundle is the cost-effective approach at a cost of $2.2 million is 89%. Conclusions: This work highlights that infection control to prevent CR-BSI is an efficient use of healthcare resources in the Australian context. If there is no further investment in infection control, an opportunity cost is incurred, which is the potential for a more efficient healthcare system. Minocycline/rifampicin catheters are the optimal choice of antimicrobial catheter for routine use in Australian Level III ICUs, however, if a catheter care bundle implemented in Australia was as effective as those used in the large studies in the United States it would be preferred over the catheters if it was able to be implemented for less than $47,826 per Level III ICU. Uncertainty is very high in this decision and arises from multiple sources. There are likely greater costs to this uncertainty for A-CVCs, which may carry hidden costs, than there are for a catheter care bundle, which is more likely to provide indirect benefits to clinical practice and patient safety. Research into the mortality attributable to CR-BSI, the effectiveness of SPC and CH/SSD (int/ext) catheters and the cost and effectiveness of a catheter care bundle in Australia should be prioritised to reduce uncertainty in this decision. This thesis provides the economic evidence to inform one area of infection control, but there are many other infection control decisions for which information about the cost-effectiveness of competing interventions does not exist. This work highlights some of the challenges and benefits to generating and using economic evidence for infection control decision-making and provides support for commissioning more research into the cost-effectiveness of infection control.
Resumo:
Studies have examined the associations between cancers and circulating 25-hydroxyvitamin D [25(OH)D], but little is known about the impact of different laboratory practices on 25(OH)D concentrations. We examined the potential impact of delayed blood centrifuging, choice of collection tube, and type of assay on 25(OH)D concentrations. Blood samples from 20 healthy volunteers underwent alternative laboratory procedures: four centrifuging times (2, 24, 72, and 96 h after blood draw); three types of collection tubes (red top serum tube, two different plasma anticoagulant tubes containing heparin or EDTA); and two types of assays (DiaSorin radioimmunoassay [RIA] and chemiluminescence immunoassay [CLIA/LIAISON®]). Log-transformed 25(OH)D concentrations were analyzed using the generalized estimating equations (GEE) linear regression models. We found no difference in 25(OH)D concentrations by centrifuging times or type of assay. There was some indication of a difference in 25(OH)D concentrations by tube type in CLIA/LIAISON®-assayed samples, with concentrations in heparinized plasma (geometric mean, 16.1 ng ml−1) higher than those in serum (geometric mean, 15.3 ng ml−1) (p = 0.01), but the difference was significant only after substantial centrifuging delays (96 h). Our study suggests no necessity for requiring immediate processing of blood samples after collection or for the choice of a tube type or assay.
Resumo:
Because aesthetics can have a profound effect upon the human relationship to the non-human environment the importance of aesthetics to ecologically sustainable designed landscapes has been acknowledged. However, in recognition that the physical forms of designed landscapes are an expression of the social values of the time, some design professionals have called for a new aesthetic ― one that reflects these current ecological concerns. To address this, some authors have suggested various theoretical design frameworks upon which such an aesthetic could be based. Within these frameworks there is an underlying theme that the patterns and processes of natural systems have the potential to form a new aesthetic for landscape design —an aesthetic based on fractal rather than Euclidean geometry. Perry, Reeves and Sim (2008) have shown that it is possible to differentiate between different landscape forms by fractal analysis. However, this research also shows that individual scenes from within very different landscape forms can possess the same fractal properties. Early data, revealed by transforming landscape images from the spatial to the frequency domain, using the fast Fourier transform, suggest that fractal patterning can have a significant effect within the landscape. In fact, it may be argued that any landscape design that includes living processes will include some design element whose ultimate form can only be expressed through the mathematics of fractal geometry. This paper will present ongoing research into the potential role of fractal geometry as a basis for a new form language – a language that may articulate an aesthetic for landscape design that echoes our ecological awakening.
Resumo:
We evaluated sustainability of an intervention to reduce women’s cardiovascular risk factors, determined the influence of self-efficacy, and described women’s current health. We used a mixed method approach that utilized forced choice and open-ended questionnaire items about health status, habits, and self-efficacy. Sixty women, average age 61, returned questionnaires. Women in the original intervention group continued health behaviors intended to reduce cardiovascular disease (CVD) at a higher rate than the control group, supporting the feasibility of a targeted intervention built around women’s individual goals. The role of self-efficacy in behavior change is unclear. The original intervention group reported higher self-reported health.
Resumo:
The main objective of this PhD was to further develop Bayesian spatio-temporal models (specifically the Conditional Autoregressive (CAR) class of models), for the analysis of sparse disease outcomes such as birth defects. The motivation for the thesis arose from problems encountered when analyzing a large birth defect registry in New South Wales. The specific components and related research objectives of the thesis were developed from gaps in the literature on current formulations of the CAR model, and health service planning requirements. Data from a large probabilistically-linked database from 1990 to 2004, consisting of fields from two separate registries: the Birth Defect Registry (BDR) and Midwives Data Collection (MDC) were used in the analyses in this thesis. The main objective was split into smaller goals. The first goal was to determine how the specification of the neighbourhood weight matrix will affect the smoothing properties of the CAR model, and this is the focus of chapter 6. Secondly, I hoped to evaluate the usefulness of incorporating a zero-inflated Poisson (ZIP) component as well as a shared-component model in terms of modeling a sparse outcome, and this is carried out in chapter 7. The third goal was to identify optimal sampling and sample size schemes designed to select individual level data for a hybrid ecological spatial model, and this is done in chapter 8. Finally, I wanted to put together the earlier improvements to the CAR model, and along with demographic projections, provide forecasts for birth defects at the SLA level. Chapter 9 describes how this is done. For the first objective, I examined a series of neighbourhood weight matrices, and showed how smoothing the relative risk estimates according to similarity by an important covariate (i.e. maternal age) helped improve the model’s ability to recover the underlying risk, as compared to the traditional adjacency (specifically the Queen) method of applying weights. Next, to address the sparseness and excess zeros commonly encountered in the analysis of rare outcomes such as birth defects, I compared a few models, including an extension of the usual Poisson model to encompass excess zeros in the data. This was achieved via a mixture model, which also encompassed the shared component model to improve on the estimation of sparse counts through borrowing strength across a shared component (e.g. latent risk factor/s) with the referent outcome (caesarean section was used in this example). Using the Deviance Information Criteria (DIC), I showed how the proposed model performed better than the usual models, but only when both outcomes shared a strong spatial correlation. The next objective involved identifying the optimal sampling and sample size strategy for incorporating individual-level data with areal covariates in a hybrid study design. I performed extensive simulation studies, evaluating thirteen different sampling schemes along with variations in sample size. This was done in the context of an ecological regression model that incorporated spatial correlation in the outcomes, as well as accommodating both individual and areal measures of covariates. Using the Average Mean Squared Error (AMSE), I showed how a simple random sample of 20% of the SLAs, followed by selecting all cases in the SLAs chosen, along with an equal number of controls, provided the lowest AMSE. The final objective involved combining the improved spatio-temporal CAR model with population (i.e. women) forecasts, to provide 30-year annual estimates of birth defects at the Statistical Local Area (SLA) level in New South Wales, Australia. The projections were illustrated using sixteen different SLAs, representing the various areal measures of socio-economic status and remoteness. A sensitivity analysis of the assumptions used in the projection was also undertaken. By the end of the thesis, I will show how challenges in the spatial analysis of rare diseases such as birth defects can be addressed, by specifically formulating the neighbourhood weight matrix to smooth according to a key covariate (i.e. maternal age), incorporating a ZIP component to model excess zeros in outcomes and borrowing strength from a referent outcome (i.e. caesarean counts). An efficient strategy to sample individual-level data and sample size considerations for rare disease will also be presented. Finally, projections in birth defect categories at the SLA level will be made.
Resumo:
The purpose of this chapter is to provide an overview of the development and use of clinical guidelines as a tool for decision making in clinical practice. Nurses have always developed and used tools to guide clinical decision making related to interventions in practice. Since Florence Nightingale (Nightingale 1860) gave us ‘notes’ on nursing in the late 1800s, nurses have continued to use tools, such as standards, policies and procedures, protocols, algorithms, clinical pathways and clinical guidelines, to assist them in making appropriate decisions about patient care that eventuate in the best desired patient outcomes. Clinical guidelines have enjoyed growing popularity as a comprehensive tool for synthesising clinical evidence and information into user-friendly recommendations for practice. Historically, clinical guidelines were developed by individual experts or groups of experts by consensus, with no transparent process for the user to determine the validity and reliability of the recommendations. The acceptance of the evidence-based practice (EBP) movement as a paradigm for clinical decision making underscores the imperative for clinical guidelines to be systematically developed and based on the best available research evidence. Clinicians are faced with the dilemma of choosing from an abundance of guidelines of variable quality, or developing new guidelines. Where do you start? How do you find an existing guideline to fit your practice? How do you know if a guideline is evidence-based, valid and reliable? Should you apply an existing guideline in your practice or develop a new guideline? How do you get clinicians to use the guidelines? How do you know if using the guideline will make any difference in care delivery or patient outcomes? Whatever the choice, the challenge lies in choosing or developing a clinical guideline that is credible as a decision-making tool for the delivery of quality, efficient and effective care. This chapter will address the posed questions through an exploration of the ins and outs of clinical guidelines, from development to application to evaluation.
Resumo:
Previous work has shown that amplitude and direction are two independently controlled parameters of aimed arm movements, and performance, therefore, suffers when they must be decomposed into Cartesian coordinates. We now compare decomposition into different coordinate systems. Subjects pointed at visual targets in 2-D with a cursor, using a two-axis joystick or two single-axis joysticks. In the latter case, joystick axes were aligned with the subjects’ body axes, were rotated by –45°, or were oblique (i.e., one axis was in an egocentric frame and the other was rotated by –45°). Cursor direction always corresponded to joystick direction. We found that compared with the two-axis joystick, responses with single-axis joysticks were slower and less accurate when the axes were oriented egocentrically; the deficit was even more pronounced when the axes were rotated and was most pronounced when they were oblique. This confirms that decomposition of motor commands is computationally demanding and documents that this demand is lowest for egocentric, higher for rotated, and highest for oblique coordinates. We conclude that most current vehicles use computationally demanding man–machine interfaces.
Resumo:
Each year, The Australian Centre for Philanthropy and Nonprofit Studies (CPNS) at Queensland University of Technology (QUT) collects and analyses statistics on the amount and extent of tax-deductible donations made and claimed by Australians in their individual income tax returns to deductible gift recipients (DGRs). The information presented below is based on the amount and type of tax-deductible donations made and claimed by Australian individual taxpayers to DGRs for the period 1 July 2006 to 30 June 2007. This information has been extracted mainly from the Australian Taxation Office's (ATO) publication Taxation Statistics 2006-07. The 2006-07 report is the latest report that has been made publicly available. It represents information in tax returns for the 2006-07 year processed by the ATO as at 31 October 2008. This study uses information based on published ATO material and represents only the extent of tax-deductible donations made and claimed by Australian taxpayers to DGRs at Item D9 Gifts or Donations in their individual income tax returns for the 2006-07 income year. The data does not include corporate taxpayers. Expenses such as raffles, sponsorships, fundraising purchases (e.g., sweets, tea towels, special events) or volunteering are generally not deductible as „gifts‟. The Giving Australia Report used a more liberal definition of gift to arrive at an estimated total of giving at $11 billion for 2005 (excluding Tsunami giving of $300 million). The $11 billion total comprised $5.7 billion from adult Australians, $2 billion from charity gambling or special events and $3.3 billion from business sources.
Resumo:
This design research concerns the generation of spaces that fully respond to people’s presence and their activities and spatialises the dynamics of a full body massage. Researched though digital and physical modelling full size physical form was constructed using Ethylene Vinyl Acetate (EVA) foam with three-dimensional shape defined by a computer generated cutting pattern, and assembled into a non-linear articulated surface.