830 resultados para INDIUM NITRIDE NANOWIRES
Resumo:
A comprehensive study of pulsed nitriding in AISI H13 tool steel at low temperature (400 degrees C) is reported for several durations. X-ray diffraction results reveal that a nitrogen enriched compound (epsilon-Fe2-3N, iron nitride) builds up on the surface within the first process hour despite the low process temperature. Beneath the surface, X-ray Wavelength Dispersive Spectroscopy (WDS) in a Scanning Electron Microscope (SEM) indicates relatively higher nitrogen concentrations (up to 12 at.%) within the diffusion layer while microscopic nitrides are not formed and existing carbides are not dissolved. Moreover, in the diffusion layer, nitrogen is found to be dispersed in the matrix and forming nanosized precipitates. The small coherent precipitates are observed by High-Resolution Transmission Electron Microscopy (HR-TEM) while the presence of nitrogen is confirmed by electron energy loss spectroscopy (EELS). Hardness tests show that the material hardness increases linearly with the nitrogen concentration, reaching up to 14.5 GPa in the surface while the Young Modulus remains essentially unaffected. Indeed, the original steel microstructure is well preserved even in the nitrogen diffusion layer. Nitrogen profiles show a case depth of about similar to 43 mu m after nine hours of nitriding process. These results indicate that pulsed plasma nitriding is highly efficient even at such low temperatures and that at this process temperature it is possible to form thick and hard nitrided layers with satisfactory mechanical properties. This process can be particularly interesting to enhance the surface hardness of tool steels without exposing the workpiece to high temperatures and altering its bulk microstructure. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
The electrochromic behavior of iron complexes derived from tetra-2-pyridyl-1,4-pyrazine (TPPZ) and a hexacyanoferrate species in polyelectrolytic multilayer adsorbed films is described for the first time. This complex macromolecule was deposited onto indium-tin oxide (ITO) substrates via self-assembly, and the morphology of the modified electrodes was studied using atomic force microscopy (AFM), which indicated that the hybrid film containing the polyelectrolyte multilayer and the iron complex was highly homogeneous and was approximately 50 nm thick. The modified electrodes exhibited excellent electrochromic behavior with both intense and persistent coloration as well as a chromatic contrast of approximately 70%. In addition, this system achieved high electrochromic efficiency (over 70 cm(2) C-1 at 630 nm) and a response time that could be measured in milliseconds. The electrode was cycled more than 10(3) times, indicating excellent stability.
Resumo:
The control of the properties of materials at the molecular level is pursued for many applications, especially those associated with nanostructures. In this paper, we show that the coordination compound [Ni(dmit)(2)], where (dmit) is the 1,3-dithiole-2-thione-4,5-dithiolate ligand, can induce doping of poly(2-methoxyaniline) (POMA) in molecularly ordered Langmuir and Langmuir-Blodgett (LB) films. Doping was associated with interactions between the components and the compression of the Langmuir film at the air-water interface, according to polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS) data. Taking these results together with in situ UV-Vis absorption measurements, we could identify the molecular groups involved in the interaction, including the way they were reoriented upon film compression. The Langmuir films were sufficiently stable to be transferred as Y-type LB films, while the hybrid POMA/[Ni(dmit)(2)] films remain doped in the solid state. As expected, the molecular charges affected the film morphology, as observed from combined atomic and electric force microscopy measurements. In summary, with adequate spectroscopy and microscopy tools we characterized molecular-level interactions, which may allow one to design molecular electronic devices with controlled electrical properties.
Resumo:
We report the synthesis of silver-gold nanotubes containing hot spots along their surface. The Ag-Au nanotubes exhibited exceptional SERS properties compared to silver nanowires, enabling the detection of crystal violet in the 10(-10) M regime, as well as 9-nitroanthracene and benzo[a] pyrene at 3.3 x 10(-7) M.
Resumo:
The exploration of novel synthetic methodologies that control both size and shape of functional nanostructure opens new avenues for the functional application of nanomaterials. Here, we report a new and versatile approach to synthesize SnO2 nanocrystals (rutile-type structure) using microwave-assisted hydrothermal method. Broad peaks in the X-ray diffraction spectra indicate the nanosized nature of the samples which were indexed as a pure cassiterite tetragonal phase. Chemically and physically adsorbed water was estimated by TGA data and FT-Raman spectra to account for a new broad peak around 560 cm(-1) which is related to defective surface modes. In addition, the spherical-like morphology and low dispersed distribution size around 3-5 nm were investigated by HR-TEM and FE-SEM microscopies. Room temperature PL emission presents two broad bands at 438 and 764 nm, indicating the existence of different recombination centers. When the size of the nanospheres decreases, the relative intensity of 513 nm emission increases and the 393 nm one decreases. UV-Visible spectra show substantial changes in the optical absorbance of crystalline SnO2 nanoparticles while the existence of a small tail points out the presence of localized levels inside the forbidden band gap and supplies the necessary condition for the PL emission.
Resumo:
A tank experiment was conducted to check if self-potential (SP) signals can be generated when buried organic matter is wire-connected to a near-surface, oxygen-rich, sediment layer. This experiment demonstrated that once wired, there was a flux of electrons (hence an electric current) between the lower and upper layers of the sandbox with the system responding as a large-scale microbial fuel cell (a type of bioelectrochemical system). An electric current was generated by this process in the wire and the SP method was used to monitor the associated electric potential distribution at the top of the tank.. The electric field was controlled by the flux of electrons through the wire, the oxidation of the organic matter, the reduction of oxygen used as a terminal electron acceptor, and the distribution of the DC resistivity in the tank. The current density through the wire was limited by the availability of oxygen and not by the oxidation of the organic matter. This laboratory experiment incorporated key elements of the biogeobattery observed in some organic-rich contaminant plumes. This analogy includes the generation of SP signals associated with a flux of electrons, the capacity of buried organic matter in sustaining anodic reactions, network resistance connecting terminal redox reactions spatially separated in space, and the existence of anodic secondary coupled reactions. A resistivity tomogram of the tank, after almost a year in operation, suggests that oxidative processes triggered by this geobattery can be imaged with this method to determine the radius of influence of the bioelectrochemical system.
Resumo:
The optoelectronic properties of InAs/GaAs quantum dots can be tuned by rapid thermal annealing. In this study, the morphology change of InAs/GaAs quantum dots layers induced by rapid thermal annealing was investigated at the atomic-scale by cross-sectional scanning tunneling microscopy. Finite elements calculations that model the outward relaxation of the cleaved surface were used to determine the indium composition profile of the wetting layer and the quantum dots prior and post rapid thermal annealing. The results show that the wetting layer is broadened upon annealing. This broadening could be modeled by assuming a random walk of indium atoms. Furthermore, we show that the stronger strain gradient at the location of the quantum dots enhances the intermixing. Photoluminescence measurements show a blueshift and narrowing of the photoluminescence peak. Temperature dependent photoluminescence measurements show a lower activation energy for the annealed sample. These results are in agreement with the observed change in morphology. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4770371]
Resumo:
Micelles composed of amphiphilic copolymers linked to a radioactive element are used in nuclear medicine predominantly as a diagnostic application. A relevant advantage of polymeric micelles in aqueous solution is their resulting particle size, which can vary from 10 to 100 nm in diameter. In this review, polymeric micelles labeled with radioisotopes including technetium (99mTc) and indium (111In), and their clinical applications for several diagnostic techniques, such as single photon emission computed tomography (SPECT), gamma-scintigraphy, and nuclear magnetic resonance (NMR), were discussed. Also, micelle use primarily for the diagnosis of lymphatic ducts and sentinel lymph nodes received special attention. Notably, the employment of these diagnostic techniques can be considered a significant tool for functionally exploring body systems as well as investigating molecular pathways involved in the disease process. The use of molecular modeling methodologies and computer-aided drug design strategies can also yield valuable information for the rational design and development of novel radiopharmaceuticals.
Resumo:
In the last years, extensive research has been devoted to develop novel materials and structures with high electrochemical performance for intermediate-temperatures solid-oxide fuel cells (IT-SOFCs) electrodes. In recent works, we have investigated the structural and electrochemical properties of La0:6Sr0:4CoO3 (LSCO) and La0:6Sr0:4Co1¡yFeyO3 (LSCFO) nanostructured cathodes, finding that they exhibit excellent electrocatalytic properties for the oxygen reduction reaction [1,2]. These materials were prepared by a pore-wetting technique using polycarbonate porous membranes as templates. Two average pore sizes were used: 200 nm and 800 nm. Our scanning electronic microscopy (SEM) study showed that the lower pore size yielded nanorods, while nanotubes were obtained with the bigger pore size. All the samples were calcined at 1000oC in order to produce materials with the desired perovskite-type crystal structure. In this work, we analyze the oxidation states of Co and Fe and the local atomic order of LSCO and LSCFO nanotubes and nanowires for various compositions. For this pur- pose we performed XANES and EXAFS studies on both Co and Fe K edges. These measurements were carried out at the D08B-XAFS2 beamline of the Brazilian Synchrotron Light Laboratory (LNLS). XANES spectroscopy showed that Co and Fe only change slightly their oxidation state upon Fe addition. Surprisingly, XANES results indicated that the content of oxygen vacancies is low, even though it is well-known that these materials are mixed ionic-electronic conductors. EXAFS results were consistent with those expected according to the rhombohedral crystal structure determined in previous X-ray powder dffraction investigations. [1] M.G. Bellino et al, J. Am. Chem. Soc. 129 (2007) 3066 [2] J.G. Sacanell et al., J. Power Sources 195 (2010) 1786
Resumo:
Ordered mesoporous ZrO2-CeO2 mixed oxides are potential candidates for catalytic applications. These systems, used as anodes in solid oxide fuel cells (SOFC), may lead to better performance of SOFCs, due to an enhancement on surface area, aiming to achieve a lower working temperature. The aim of this studies is to evaluate the reduction capacity of Ni2+ to Ni in ZrO2-x(mol)%CeO2 (x=50 and 90) samples impregnated with 60(wt.)%NiO. The synthesis was made with Zr and Ce chloride precursors, HCl aqueous solution, Pluronic P123, NH4OH to adjust the pH (3-4) and a teflon autoclave to perform a hydrothermal treatment (80oC/48h). The samples were dried and calcined, until 540oC in N2 and 4 hours in air. The NiO impregnation was made with an ethanol dispersion of Ni(NO3)£6H2O. The powder was calcinated in air until 350oC for 2 hours. Temperature-resolved XANES data at the Ni K-edge were collected at the DXAS beam line of the LNLS in transmission mode, using a Si(111) monochromator and a CCD detector. Sample preparation consisted of mixing »6mg of the powder samples with boron nitride and pressing into pellets. The data were acquired during an experiment of temperature programmed reduction (TPR) under a 5% H2/He until 600oC and mixtures of 20%CH4:5%O2/He, at temperatures from 400 to 600oC. All the reactions were monitored with a mass spectrometer. The data was analyzed with a linear combination fit of 2 standards for each valence number using Athena software. The Ni K-edge experiments demonstrated that for both contents of CeO2, NiO embedded in the porous zirconia-ceria matrix reduces at lower temperatures than pure NiO, revealing that the ZrO2-CeO2 support improves the reduction of impregnated NiO. Ni was oxidized to NiO after all reactions with methane and oxygen. Hydrogenated carbonaceous species were detected, but under reducing conditions, the hydrocarbon compounds are removed. The reaction of total oxidation of methane CH4:O2 (1:2 ratio) was observed at lower temperatures (around 400oC) for both samples.
Resumo:
This work reports on the construction and spectroscopic analyses of optical micro-cavities (OMCs) that efficiently emit at ~1535 nm. The emission wavelength matches the third transmission window of commercial optical fibers and the OMCs were entirely based on silicon. The sputtering deposition method was adopted in the preparation of the OMCs, which comprised two Bragg reflectors and one spacer layer made of either Er- or ErYb-doped amorphous silicon nitride. The luminescence signal extracted from the OMCs originated from the 4I13/2→4I15/2 transition (due to Er3+ ions) and its intensity showed to be highly dependent on the presence of Yb3+ ions.According to the results, the Er3+-related light emission was improved by a factor of 48 when combined with Yb3+ ions and inserted in the spacer layer of the OMC. The results also showed the effectiveness of the present experimental approach in producing Si-based light-emitting structures in which the main characteristics are: (a) compatibility with the actual microelectronics industry, (b) the deposition of optical quality layers with accurate composition control, and (c) no need of uncommon elements-compounds nor extensive thermal treatments. Along with the fundamental characteristics of the OMCs, this work also discusses the impact of the Er3+-Yb3+ ion interaction on the emission intensity as well as the potential of the present findings.
Resumo:
At present, solid thin films are recognized by their well established and mature processing technology that is able to produce components which, depending on their main characteristics, can perform either passive or active functions. Additionally, Si-based materials in the form of thin films perfectly match the concept of miniaturized and low-consumption devices-as required in various modern technological applications. Part of these aspects was considered in the present work that was concerned with the study of optical micro-cavities entirely based on silicon and silicon nitride thin films. The structures were prepared by the sputtering deposition method which, due to the adopted conditions (atmosphere and deposition rate) and arrangement of layers, provided cavities operating either in the visible (at ~ 670 nm) or in the near-infrared (at ~ 1560 nm) wavelength ranges. The main differential of the work relies on the construction of optical microcavities with a reduced number of periods whose main properties can be changed by thermal annealing treatments. The work also discusses the angle-dependent behavior of the optical transmission profiles as well as the use of the COMSOL software package to simulate the microcavities.
Resumo:
The effect of terbium (Tb) doping on the photoluminescence (PL) of crystalline aluminum nitride (c-AlN) and amorphous hydrogenated silicon carbide (a-SiC:H) thin films has been investigated for different Tb atomic concentrations. The samples were prepared by DC and RF magnetron reactive sputtering techniques covering the concentration range of Tb from 0.5 to 11 at.%. The Tb-related light emission versus the Tb concentration is reported for annealing temperatures of 450 °C, 750 °C and 1000 °C. In the low concentration region the intensity exhibits a linear increase and its slope is enhanced with the annealing temperature giving an activation energy of 0.106 eV in an Arrhenius plot. In the high concentration region an exponential decay is recorded which is almost independent on the host material, its structure and the annealing process.
Resumo:
Spark Plasma Sintering (SPS) is a promising rapid consolidation technique that allows a better understanding and manipulating of sintering kinetics and therefore makes it possible to obtain Si3N4-based ceramics with tailored microstructures, consisting of grains with either equiaxed or elongated morphology. The presence of an extra liquid phase is necessary for forming tough interlocking microstructures in Yb/Y-stabilised α-sialon by HP. The liquid is introduced by a new method, namely by increasing the O/N ratio in the general formula RExSi12-(3x+n)Al3x+nOnN16-n while keeping the cation ratios of RE, Si and Al constant. Monophasic α-sialon ceramics with tailored microstructures, consisting of either fine equiaxed or elongated grains, have been obtained by using SPS, whether or not such an extra liquid phase is involved. The three processes, namely densification, phase transformation and grain growth, which usually occur simultaneously during conventional HP consolidation of Si3N4-based ceramics, have been precisely followed and separately investigated in the SPS process. The enhanced densification is attributed to the non-equilibrium nature of the liquid phase formed during heating. The dominating mechanism during densification is the enhanced grain boundary sliding accompanied by diffusion- and/or reaction-controlled processes. The rapid grain growth is ascribed to a dynamic ripening mechanism based on the formation of a liquid phase that is grossly out of equilibrium, which in turn generates an extra chemical driving force for mass transfer. Monophasic α-sialon ceramics with interlocking microstructures exhibit improved damage tolerance. Y/Yb- stabilised monophasic α-sialon ceramics containing approximately 3 vol% liquid with refined interlocking microstructures have excellent thermal-shock resistance, comparable to the best β-sialon ceramics with 20 vol% additional liquid phase prepared by HP. The obtained sialon ceramics with fine-grained microstructure show formidably improved superplasticity in the presence of an electric field. The compressive strain rate reaches the order of 10-2 s-1 at temperatures above 1500oC, that is, two orders of magnitude higher than that has been realised so far by any other conventional approaches. The high deformation rate recorded in this work opens up possibilities for making ceramic components with complex shapes through super-plastic forming.
Resumo:
Dichloroindium hydride revealed to be a valid alternative to tributyltin hydride for radical reduction of organic (alkyl, aryl, acyl, solfonyl) azides. The new approach entails mild reaction conditions and provides high yields of the corresponding amines and amides, also showing high degrees of selectivity. The system dichloroindium hydride / azides can be utilised in fivemembered ring closures of g-azidonitriles, as a new source of aminyl radicals for the attractive synthesis of interesting amidine compounds in the absence of both toxic reagents and tedious purification procedures. Allylindium dichloride seems a good substitute for dichloroindium hydride for generation of indium centred radicals under photolytic conditions, since it allows allylation of electrophilic azides (e.g. phenylsulfonyl azide) and halogen or ester δ-substituted azides, the latter through a 1,5-H transfer rearrangement mechanism. Evidences of the radical nature of the reactions mechanism were provided by ESR spectroscopy, furthermore the same technique, allowed to discover that the reaction of azides with indium trichloride and other group XIII Lewis acids, in particular gallium trichloride, gives rise to strongly coloured, persistent paramagnetic species, whose structure is consistent with the radical cation of the head-to-tail dimer of the aniline corresponding to the starting azide.