939 resultados para Hypoxia,Benthic community,Transitional habitats,ecology,Polycheata,Anphypoda,timing,Recovery
Resumo:
Semi-natural grasslands, biodiversity hotspots in Central-Europe, suffer from the cessation of traditional land-use. Amount and intensity of these changes challenge current monitoring frameworks typically based on classic indicators such as selected target species or diversity indices. Indicators based on plant functional traits provide an interesting extension since they reflect ecological strategies at individual and ecological processes at community levels. They typically show convergent responses to gradients of land-use intensity over scales and regions, are more directly related to environmental drivers than diversity components themselves and enable detecting directional changes in whole community dynamics. However, probably due to their labor- and cost intensive assessment in the field, they have been rarely applied as indicators so far. Here we suggest overcoming these limitations by calculating indicators with plant traits derived from online accessible databases. Aiming to provide a minimal trait set to monitor effects of land-use intensification on plant diversity we investigated relationships between 12 community mean traits, 2 diversity indices and 6 predictors of land-use intensity within grassland communities of 3 different regions in Germany (part of the German ‘Biodiversity Exploratory’ research network). By standardization of traits and diversity measures, use of null models and linear mixed models we confirmed (i) strong links between functional community composition and plant diversity, (ii) that traits are closely related to land-use intensity, and (iii) that functional indicators are equally, or even more sensitive to land-use intensity than traditional diversity indices. The deduced trait set consisted of 5 traits, i.e., specific leaf area (SLA), leaf dry matter content (LDMC), seed release height, leaf distribution, and onset of flowering. These database derived traits enable the early detection of changes in community structure indicative for future diversity loss. As an addition to current monitoring measures they allow to better link environmental drivers to processes controlling community dynamics.
Resumo:
1 .In their colonized ranges, exotic plants may be released from some of the herbivores or pathogens of their home ranges but these can be replaced by novel enemies. It is of basic and practical interest to understand which characteristics of invaded communities control accumulation of the new pests. Key questions are whether enemy load on exotic species is smaller than on native competitors as suggested by the enemy release hypothesis (ERH) and whether this difference is most pronounced in resource-rich habitats as predicted by the resource–enemy release hypothesis (R-ERH). 2. In 72 populations of 12 exotic invasive species, we scored all visible above-ground damage morphotypes caused by herbivores and fungal pathogens. In addition, we quantified levels of leaf herbivory and fruit damage. We then assessed whether variation in damage diversity and levels was explained by habitat fertility, by relatedness between exotic species and the native community or rather by native species diversity. 3. In a second part of the study, we also tested the ERH and the R-ERH by comparing damage of plants in 28 pairs of co-occurring native and exotic populations, representing nine congeneric pairs of native and exotic species. 4. In the first part of the study, diversity of damage morphotypes and damage levels of exotic populations were greater in resource-rich habitats. Co-occurrence of closely related, native species in the community significantly increased the probability of fruit damage. Herbivory on exotics was less likely in communities with high phylogenetic diversity. 5. In the second part of the study, exotic and native congeneric populations incurred similar damage diversity and levels, irrespective of whether they co-occurred in nutrient-poor or nutrient-rich habitats. 9. Synthesis. We identified habitat productivity as a major community factor affecting accumulation of enemy damage by exotic populations. Similar damage levels in exotic and native congeneric populations, even in species pairs from fertile habitats, suggest that the enemy release hypothesis or the R-ERH cannot always explain the invasiveness of introduced species.
Resumo:
Aim: Accumulating evidence indicates that species may be pre-adapted for invasion success in new ranges. In the light of increasing global nutrient accumulation, an important candidate pre-adaptation for invasiveness is the ability to grow in nutrient-rich habitats. Therefore we tested whether globally invasive species originating from Central Europe have come from more productive rather than less productive habitats. A further important candidate pre-adaptation for invasiveness is large niche width. Therefore, we also tested whether species able to grow across habitats with a wider range of productivity are more invasive. Location: Global with respect to invasiveness, and Central European with respect to origin of study species. Methods We examined whether average habitat productivity and its width across habitats are significant predictors of the success of Central European species as aliens and as weeds elsewhere in the world based on data in the Global Compendium of Weeds. The two habitat productivity measures were derived from nutrient indicator values (after Ellenberg) of accompanying species present in vegetation records of the comprehensive Czech National Phytosociological Database. In the analyses, we accounted for phylogenetic relatedness among species and for size of the native distribution ranges. Results: Species from more productive habitats and with a wider native habitat-productivity niche in Central Europe have higher alien success elsewhere in the world. Weediness of species increased with mean habitat productivity. Niche width was also an important determinant of weediness for species with their main occurrence in nutrient-poor habitats, but not for those from nutrient-rich habitats. Main conclusions: Our results indicate that Central European plant species from productive habitats and those species from nutrient-poor habitat with wide productivity-niche are pre-adapted to become invasive. These results suggest that the world-wide invasion success of many Central European species is likely to have been promoted by the global increase of resource-rich habitats.
Resumo:
Understanding factors driving the ecology of N cycling microbial communities is of central importance for sustainable land use. In this study we report changes of abundance of denitrifiers, nitrifiers and nitrogen-fixing microorganisms (based on qPCR data for selected functional genes) in response to different land use intensity levels and the consequences for potential turnover rates. We investigated selected grassland sites being comparable with respect to soil type and climatic conditions, which have been continuously treated for many years as intensely used meadows (IM), intensely used mown pastures (IP) and extensively used pastures (EP), respectively. The obtained data were linked to above ground biodiversity pattern as well as water extractable fractions of nitrogen and carbon in soil. Shifts in land use intensity changed plant community composition from systems dominated by s-strategists in extensive managed grasslands to c-strategist dominated communities in intensive managed grasslands. Along the different types of land use intensity, the availability of inorganic nitrogen regulated the abundance of bacterial and archaeal ammonia oxidizers. In contrast, the amount of dissolved organic nitrogen determined the abundance of denitrifiers (nirS and nirK). The high abundance of nifH carrying bacteria at intensive managed sites gave evidence that the amounts of substrates as energy source outcompete the high availability of inorganic nitrogen in these sites. Overall, we revealed that abundance and function of microorganisms involved in key processes of inorganic N cycling (nitrification, denitrification and N fixation) might be independently regulated by different abiotic and biotic factors in response to land use intensity.
Resumo:
We have reviewed the considerable body of research into the sea urchin phenomenon responsible for the alternation between macroalgal beds and coralline barrens in the northwestern Atlantic. In doing so, we have identified problems with both the scientific approach and the interpretation of results. Over a period of approximately 20 years, explanations for the phenomenon invoked four separate scenarios, which changed mainly as a consequence of extraneous events rather than experimental testing. Our specific concerns are that results contrary to the keystone-predator paradigm for the American lobster were circumvented, system components of the various scenarios became accepted without testing, and modifications of some components appeared arbitrary. Our review illustrates dilemmas that, we suggest, have hindered ecological progress in general. We argue for a more rigorous experimental approach, based on sound natural-history observations and strong inference. Moreover, we believe that the scientific community needs to be cautious about allowing paradigms to become established without adequate scrutiny.
Resumo:
* Hundreds of experiments have now manipulated species richness (SR) of various groups of organisms and examined how this aspect of biological diversity influences ecosystem functioning. Ecologists have recently expanded this field to look at whether phylogenetic diversity (PD) among species, often quantified as the sum of branch lengths on a molecular phylogeny leading to all species in a community, also predicts ecological function. Some have hypothesized that phylogenetic divergence should be a superior predictor of ecological function than SR because evolutionary relatedness represents the degree of ecological and functional differentiation among species. But studies to date have provided mixed support for this hypothesis. * Here, we reanalyse data from 16 experiments that have manipulated plant SR in grassland ecosystems and examined the impact on above-ground biomass production over multiple time points. Using a new molecular phylogeny of the plant species used in these experiments, we quantified how the PD of plants impacts average community biomass production as well as the stability of community biomass production through time. * Using four complementary analyses, we show that, after statistically controlling for variation in SR, PD (the sum of branches in a molecular phylogenetic tree connecting all species in a community) is neither related to mean community biomass nor to the temporal stability of biomass. These results run counter to past claims. However, after controlling for SR, PD was positively related to variation in community biomass over time due to an increase in the variances of individual species, but this relationship was not strong enough to influence community stability. * In contrast to the non-significant relationships between PD, biomass and stability, our analyses show that SR per se tends to increase the mean biomass production of plant communities, after controlling for PD. The relationship between SR and temporal variation in community biomass was either positive, non-significant or negative depending on which analysis was used. However, the increases in community biomass with SR, independently of PD, always led to increased stability. These results suggest that PD is no better as a predictor of ecosystem functioning than SR. * Synthesis. Our study on grasslands offers a cautionary tale when trying to relate PD to ecosystem functioning suggesting that there may be ecologically important trait and functional variation among species that is not explained by phylogenetic relatedness. Our results fail to support the hypothesis that the conservation of evolutionarily distinct species would be more effective than the conservation of SR as a way to maintain productive and stable communities under changing environmental conditions.
Resumo:
In response to insect attack, plants release complex blends of volatile compounds. These volatiles serve as foraging cues for herbivores, predators and parasitoids, leading to plant-mediated interactions within and between trophic levels. Hence, plant volatiles may be important determinants of insect community composition. To test this, we created rice lines that are impaired in the emission of two major signals, S-linalool and (E)-β-caryophyllene. We found that inducible S-linalool attracted predators and parasitoids as well as chewing herbivores, but repelled the rice brown planthopper Nilaparvata lugens, a major pest. The constitutively produced (E)-β-caryophyllene on the other hand attracted both parasitoids and planthoppers, resulting in an increased herbivore load. Thus, silencing either signal resulted in specific insect assemblages in the field, highlighting the importance of plant volatiles in determining insect community structures. Moreover, the results imply that the manipulation of volatile emissions in crops has great potential for the control of pest populations.
Resumo:
The European standard for gillnetsampling to characterize lake fish communities stratifies sampling effort (i.e., number of nets) within depth strata. Nets to sample benthic habitats are randomly distributed throughout the lake within each depth strata. Pelagic nets are also stratified by depth, but are set only at the deepest point of the lake. Multiple authors have suggested that this design under-represents pelagic habitats, resulting in estimates of whole-lake CPUE and community composition which are disproportionately influenced by ecological conditions of littoral and benthic habitats. To address this issue, researchers have proposed estimating whole-lake CPUE by weighting the catch rate in each depth-compartment by the proportion of the volume of the lake contributed by the compartment. Our study aimed to assess the effectiveness of volume-weighting by applying it to fish communities sampled according to the European standard (CEN), and by a second whole-lake gillnetting protocol (VERT), which prescribes additional fishing effort in pelagic habitats. We assume that convergence between the protocols indicates that volume-weighting provides a more accurate estimate of whole-lake catch rate and community composition. Our results indicate that volume-weighting improves agreement between the protocols for whole-lake total CPUE, estimated proportion of perch and roach and the overall fish community composition. Discrepancies between the protocols remaining after volume-weighting maybe because sampling under the CEN protocol overlooks horizontal variation in pelagic fish communities. Analyses based on multiple pelagic-set VERT nets identified gradients in the density and biomass of pelagic fish communities in almost half the lakes that corresponded with the depth of water at net-setting location and distance along the length of a lake. Additional CEN pelagic sampling effort allocated across water depths and distributed throughout the lake would therefore help to reconcile differences between the sampling protocols and, in combination with volume-weighting, converge on a more accurate estimate of whole-lake fish communities.
Further re-analyses looking for effects of phylogenetic diversity on community biomass and stability
Resumo:
We have identified benthic recruitment habitats and nursery grounds of the American lobster Homarus americanus Milne Edwards in the coastal Gulf of Maine, USA, by systematically censusing subtidal sediment, cobble, and ledge substrata. We distinguish lobsters between settlement size (5 mm carapace length (CL) to ca 40 mm CL as the 'early benthic phase' (EBP) because they are ecologically and behaviorally distinct from larger lobsters. EBP lobsters are cryptic and apparently restricted to shelter-providing habitats (primarily cobble substratum) in coastal Gulf of Maine. In these habitats we found average population densities of EBP lobsters as high as 6.9 m-2. EBP lobsters were virtually absent from ledge and sedimentary substrata devoid of vegetation although larger lobsters are commonly found there. It is possible that the requirement for shelter-providing substrata by this life phase creates a natural demographic 'bottleneck' to benthic recruitment for the species. Prime cobble recruitment habitat is relatively rare and comprises ca 11 % of the 60.2 km of shoreline at our study area in midcoast Maine. If this low availability of cobble exists throughout the Gulf of Maine, as other studies indicate, it could limit lobster production potential. We verified the geographic extent of recruitment to cobble habitats censused in 3 of 4 regions spanning ca 300 km of the coastal Gulf of Maine (from Nahant, Massachusetts to Swans Island, Maine). Early benthic phase lobsters were absent from cobble censused in the northeastern extreme of our survey (Swans Island). This pattern is consistent with earlier speculation that relatively cool water temperatures may limit larval settlement in this region.
Resumo:
This data set contains aboveground community biomass (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested twice in 2004 just prior to mowing (during peak standing biomass in late May and in late August) on all experimental plots of the main experiment. This was done by clipping the vegetation at 3 cm above ground in four rectangles of 0.2 x 0.5 m per large plot. The location of these rectangles was assigned prior to each harvest by random selection of coordinates within the core area of the plots (i.e. the central 10 x 15 m). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The data for individual samples and the mean over samples for the biomass measures on the community level are given. Overall, analyses of the community biomass data have identified species richness as well as functional group composition as important drivers of a positive biodiversity-productivity relationship.
Resumo:
Rising seawater temperature and CO2 concentrations (ocean acidification) represent two of the most influential factors impacting marine ecosystems in the face of global climate change. In ecological climate change research full-factorial experiments across seasons in multi-species, cross-trophic level set-ups are essential as they allow making realistic estimations about direct and indirect effects and the relative importance of both major environmental stressors on ecosystems. In benthic mesocosm experiments we tested the responses of coastal Baltic Sea Fucus vesiculosus communities to elevated seawater temperature and CO2 concentrations across four seasons of one year. While increasing [CO2] levels only had minor effects, warming had strong and persistent effects on grazers which affected the Fucus community differently depending on season. In late summer a temperature-driven collapse of grazers caused a cascading effect from the consumers to the foundation species resulting in overgrowth of Fucus thalli by epiphytes. In fall/ winter, outside the growing season of epiphytes, intensified grazing under warming resulted in a significant reduction of Fucus biomass. Thus, we confirm the prediction that future increasing water temperatures influence marine food-web processes by altering top-down control, but we also show that specific consequences for food-web structure depend on season. Since Fucus vesiculosus is the dominant habitat-forming brown algal system in the Baltic Sea, its potential decline under global warming implicates the loss of key functions and services such as provision of nutrient storage, substrate, food, shelter and nursery grounds for a diverse community of marine invertebrates and fish in Baltic Sea coastal waters.
Resumo:
An experiment was carried out on the soft bottom in the sublitoral zone of the Furugelm Island (Peter the Great Bay, Sea of Japan) to study formation of benthic communities. Boxes with defauned sediments were placed on depths of 4, 6 and 13 m and exposed during 60 days in the summer period. Half of them were covered with a net with mesh size 2 cm to prevent effect of large predators. It was found that spatial pattern of invertebrates' sinking in the bay conforms to distribution of benthic communities. Larvae of benthic invertebrates sinks in general in places inhabited by their adult species. The main factors responsible for recolonzation are: sediment type and local hydrodynamic conditions. Heart-shaped sea urchin Echinocardium cordatum is numerically dominated in the bay on depth 3-4.5 m, but its larvae sinks in the deeper area. Community structure is supported by mature specimen migration to places inhabited by species. Predators affect largely on the species.
Resumo:
This data set contains aboveground community biomass (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested twice in 2007 just prior to mowing (during peak standing biomass in early June and in late August) on all experimental plots of the main experiment. This was done by clipping the vegetation at 3 cm above ground in four (May) or three (August) rectangles of 0.2 x 0.5 m per large plot. The location of these rectangles was assigned prior to each harvest by random selection of coordinates within the core area of the plots (i.e. the central 10 x 15 m). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The data for individual samples and the mean over samples for the biomass measures on the community level are given. Overall, analyses of the community biomass data have identified species richness as well as functional group composition as important drivers of a positive biodiversity-productivity relationship.