887 resultados para Human smooth muscle stem progenitor cells (hSMSPC)
Resumo:
The low level of amphotropic retrovirus-mediated gene transfer into human hematopoietic stem cells (HSC) has been a major impediment to gene therapy for hematopoietic diseases. In the present study, we have examined amphotropic retrovirus receptor (amphoR) and ecotropic retrovirus receptor mRNA expression in highly purified populations of mouse and human HSC. Murine HSC with low to undetectable levels of amphoR mRNA and relatively high levels of ecotropic retrovirus receptor mRNA were studied. When these HSC were analyzed simultaneously for ecotropic and amphotropic retrovirus transduction, ecotropic provirus sequences were detected in 10 of 13 long-term repopulated animals, while amphotropic proviral sequences were detected in only one recipient. A second distinct population of murine HSC were isolated that express 3-fold higher levels of amphoR mRNA. When these HSC were analyzed simultaneously for ecotropic and amphotropic retrovirus transduction, 11 of 11 repopulated mice contained ecotropic provirus and 6 of 11 contained amphotropic provirus sequences, a significant increase in the amphotropic retrovirus transduction (P = 0.018). These results indicate that, among the heterogeneous populations of HSC present in adult mouse bone marrow, the subpopulation with the highest level of amphoR mRNA is more efficiently transduced by amphotropic retrovirus. In a related study, we found low levels of human amphoR mRNA in purified populations of human HSC (CD34+ CD38-) and higher levels in committed progenitor cells (CD34+ CD38+). We conclude that the amphoR mRNA level in HSC correlates with amphotropic retrovirus transduction efficiency.
Resumo:
High phosphate (Pi) levels and extracellular matrix (ECM) accumulation are associated with chronic kidney disease progression. However, how high Pi levels contribute to ECM accumulation in mesangial cells is unknown. The present study investigated the role and mechanism of high Pi levels in ECM accumulation in immortalized human mesangial cells (iHMCs). iHMCs were exposed to normal (0.9 mM) or increasing Pi concentrations (2.5 and 5 mM) with or without diferent blockers or activators. NOX4, phosphorylated AMPK (p-AMPK), phosphorylated SMAD3 (p-SMAD3), fibronectin (F/N), collagen IV (C-IV) and alpha-smooth muscle actin (α-SMA) expression was assessed via western blot and immunofluorescence. Lucigenin-enhanced chemiluminescence, and dihydroethidium (DHE) assessed NADPH oxidase activity and superoxide (SO), respectively. In iHMCs, a Pi transporter blocker (PFA) abrogated high Pi-induced AMPK inactivation, increase in NADPH oxidase-induced reactive oxygen species (ROS) levels, NOX4, p-SMAD3, α-SMA and C-IV expression. AMPK activation by AICAR, NOX4 silencing or NADPH oxidase blocker prevented high Pi-induced DHE levels, p-SMAD3, F/N, C-IV and α-SMA expression. AMPK inactivation with NOX4-induced ROS formation and transforming growth factor ß-1 (TGFß-1) signaling activation mediates high Pi-induced ECM accumulation in iHMCs. Maneuvers increasing AMPK or reducing NOX4 activity may contribute to renal protection under hyperphosphatemia.
Resumo:
A morphological and cell culture study from nasal mucosa of dogs was performed in order to establish a protocol to obtain a cell population committed to neuronal lineage, as a proposal for the treatment of traumatic and degenerative lesions in these animals, so that in the future these results could be applied to the human species. Twelve mongrel dogs of 60-day aged pregnancy were collected from urban pound dogs in São Paulo. Tissue from cribriform ethmoidal lamina of the fetuses was collected at necropsy under sterile conditions around 1h to 2h postmortem by uterine sections and sections from the fetal regions described above. Isolated cells of this tissue were added in DMEM/F-12 medium under standard conditions of incubation (5% CO², >37ºC). Cell culture based on isolated cells from biopsies of the olfactory epithelium showed rapid growth when cultured for 24 hours, showing phase-bright sphere cells found floating around the fragments, attached on culture flasks. After 20 days, a specific type of cells, predominantly ellipsoids or fusiform cells was characterized in vitro. The indirect immunofluorescence examination showed cells expressing markers of neuronal precursors (GFAP, neurofilament, oligodendrocyte, and III â-tubulin). The cell proliferation index showed Ki67 immunostaining with a trend to label cell groups throughout the apical region, while PCNA immunostaining label predominantly cell groups lying above the basal lamina. The transmission electron microscopy from the olfactory epithelium of dogs revealed cells with electron-dense cytoplasm and preserving the same distribution as those of positive cell staining for PCNA. Metabolic activity was confirmed by presence of euchromatin in the greatest part of cells. All these aspects give subsidies to support the hypothesis about resident progenitor cells among the basal cells of the olfactory epithelium, committed to renewal of these cell populations, especially neurons.
Resumo:
Background: The prostate stroma is a key mediator of epithelial differentiation and development, and potentially plays a role in the initiation and progression of prostate cancer. The tumor-associated stroma is marked by increased expression of CD90/THYI. Isolation and characterization of these stromal cells could provide valuable insight into the biology of the tumor microenvironment. Methods: Prostate CD90(+) stromal fibromuscular cells from tumor specimens were isolated by cell-sorting and analyzed by DNA microarray. Dataset analysis was used to compare gene expression between histologically normal and tumor-associated stromal cells. For comparison, stromal cells were also isolated and analyzed from the urinary bladder. Results: The tumor-associated stromal cells were found to have decreased expression of genes involved in smooth muscle differentiation, and those detected in prostate but not bladder. Other differential expression between the stromal cell types included that of the CXC-chemokine genes. Conclusion: CD90(+) prostate tumor-associated stromal cells differed from their normal counterpart in expression of multiple genes, some of which are potentially involved in organ development.
Resumo:
As previously shown, higher levels of NOTCH1 and increased NF-kappa B signaling is a distinctive feature of the more primitive umbilical cord blood (UCB) CD34+ hematopoietic stem cells (HSCs), as compared to bone marrow ( BM). Differences between BM and UCB cell composition also account for this finding. The CD133 marker defines a more primitive cell subset among CD34+ HSC with a proposed hemangioblast potential. To further evaluate the molecular basis related to the more primitive characteristics of UCB and CD133+ HSC, immunomagnetically purified human CD34+ and CD133+ cells from BM and UCB were used on gene expression microarrays studies. UCB CD34+ cells contained a significantly higher proportion of CD133+ cells than BM (70% and 40%, respectively). Cluster analysis showed that BM CD133+ cells grouped with the UCB cells ( CD133+ and CD34+) rather than to BM CD34+ cells. Compared with CD34+ cells, CD133+ had a higher expression of many transcription factors (TFs). Promoter analysis on all these TF genes revealed a significantly higher frequency ( than expected by chance) of NF-kappa B-binding sites (BS), including potentially novel NF-kappa B targets such as RUNX1, GATA3, and USF1. Selected transcripts of TF related to primitive hematopoiesis and self-renewal, such as RUNX1, GATA3, USF1, TAL1, HOXA9, HOXB4, NOTCH1, RELB, and NFKB2 were evaluated by real-time PCR and were all significantly positively correlated. Taken together, our data indicate the existence of an interconnected transcriptional network characterized by higher levels of NOTCH1, NF-kappa B, and other important TFs on more primitive HSC sets.
Resumo:
The existence of loss and gain of chromosomes, known as aneuploidy, has been previously described within the central nervous system. During development, at least one-third of neural progenitor cells (NPCs) are aneuploid. Notably, aneuploid NPCs may survive and functionally integrate into the mature neural circuitry. Given the unanswered significance of this phenomenon, we tested the hypothesis that neural differentiation induced by all-trans retinoic acid (RA) in pluripotent stem cells is accompanied by increased levels of aneuploidy, as previously described for cortical NPCs in vivo. In this work we used embryonal carcinoma (EC) cells, embryonic stem (ES) cells and induced pluripotent stem (iPS) cells undergoing differentiation into NPCs. Ploidy analysis revealed a 2-fold increase in the rate of aneuploidy, with the prevalence of chromosome loss in RA primed stem cells when compared to naive cells. In an attempt to understand the basis of neurogenic aneuploidy, micronuclei formation and survivin expression was assessed in pluripotent stem cells exposed to RA. RA increased micronuclei occurrence by almost 2-fold while decreased survivin expression by 50%, indicating possible mechanisms by which stem cells lose their chromosomes during neural differentiation. DNA fragmentation analysis demonstrated no increase in apoptosis on embryoid bodies treated with RA, indicating that cell death is not the mandatory fate of aneuploid NPCs derived from pluripotent cells. In order to exclude that the increase in aneuploidy was a spurious consequence of RA treatment, not related to neurogenesis, mouse embryonic fibroblasts were treated with RA under the same conditions and no alterations in chromosome gain or loss were observed. These findings indicate a correlation amongst neural differentiation, aneuploidy, micronuclei formation and survivin downregulation in pluripotent stem cells exposed to RA, providing evidence that somatically generated chromosomal variation accompanies neurogenesis in vitro.
Resumo:
The pathways involved in the maintenance of human embryonic stem (hES) cells remain largely unknown, although some signaling pathways have been identified in mouse embryonic stem (mES) cells. Fibroblast feeder layers are used to maintain the undifferentiated growth of hES cells and an examination of the conditioned media (CM) of human neonatal fibroblasts (HNFs) could provide insights into the maintenance of hES cells. The neonatal foreskin fibroblast line (HNF02) used in this study was shown to have a normal 2n = 46, XY chromosomal complement and to support the undifferentiated growth of the Embryonic Stem Cell International Pte. Ltd.-hES3 cell line. The CM of HNF02 was examined using two-dimensional liquid chromatography-tandem mass spectrometry (2-D LCMS) and two-dimensional electrophoresis (2-DE) followed by matrix-assisted laser desorption/ionization-time of flight tandem mass spectrometry (2-DE/MALDI). A total of 102 proteins were identified, 19 by 2-DE/MALDI, 53 by 2-D LCMS and 30 by both techniques. These proteins were classified into 15 functional groups. Proteins identified in the extracellular matrix and differentiation and growth factor functional categories were considered most likely to be involved in the maintenance of hES cell growth, differentiation and pluripotency as these groups contained proteins involved in a variety of events including cell adhesion, cell proliferation and inhibition of cell proliferation, Writ signaling and inhibition of bone morphogenetic proteins.
Resumo:
In a previous study, we found that the cytokine (human) leukemia inhibitory factor (hLIF) significantly reduced plasma cholesterol levels and the accumulation of lipid in aortic tissues of cholesterol-fed rabbits after 4 weeks of treatment. The mechanisms by which this occurs were investigated in the present study. This involved examining the effect of hLIF on (1) the level of plasma cholesterol at different times throughout the 4-week treatment and diet period; (2) smooth muscle cell (SMC) and macrophage-derived foam cell formation in vitro; and (3) LDL receptor expression and uptake in the human hepatoma cell line HepG2. At time zero, an osmotic minipump (2-mL capacity; infusion rate, 2.5 mu L/h; 28 days) containing either hLIF (30 mu g.kg(-1).d(-1)) or saline was inserted into the peritoneal cavity of New Zealand White rabbits (N=24). Rabbits were divided into four groups of six animals each. Group 1 received a normal diet/saline; group 2, a normal diet/hLIF; group 3, a 1% cholesterol diet/saline; and group 4, a 1% cholesterol diet/hLIF. hLIF had no effect on the plasma lipids or artery wall of group 2 rabbits (normal diet). However, in group 4 rabbits, plasma cholesterol levels and the percent surface area of thoracic aorta covered by fatty streaks was decreased by approximate to 30% and 80%, respectively, throughout all stages of the 4-week treatment period. In vitro, hLIF failed to prevent lipoprotein uptake by either SMCs or macrophages (foam cell formation) when the cells were exposed to P-VLDL for 24 hours. In contrast, hLIF (100 ng/mL) added to cultured human hepatoma HepG2 cells induced a twofold or threefold increase in intracellular lipid accumulation in the medium containing 10% lipoprotein-deficient serum or 10% fetal calf serum, respectively. This was accompanied by a significant non-dose-dependent increase in LDL receptor expression in hLIF-treated HepG2 cells incubated with LDL (20 mu g/mL) when compared with controls (P
Resumo:
Different routes for the administration of bone marrow-derived cells (BMDC) have been proposed to treat the progression of chronic renal failure (CRF). We investigated whether (1) the use of bovine pericardium (BP) as a scaffold for cell therapy would retard the progression of CAF and (2) the efficacy of cell therapy differently impacts distinct degrees of CRF. We used 2/3 and 5/6 models of renal mass reduction to simulate different stages of chronicity. Treatments consisted of BP seeded with either mesenchymal or mononuclear cells implanted in the parenchyma of remnant kidney. Renal function and proteinuria were measured at days 45 and 90 after cell implantation. BMDC treatment reduced glomerulosclerosis, interstitial fibrosis and lymphocytic infiltration. Immunohistochemistry showed decreased macrophage accumulation, proliferative activity and the expression of fibronectin and alpha-smooth muscle-actin. Our results demonstrate: (1) biomaterial combined with BMDC did retard the progression of experimental CRF; (2) cellular therapy stabilized serum creatinine (sCr), improved creatinine clearance and 1/sCr slope when administered during the less severe stages of CRF; (3) treatment with combined therapy decreased glomerulosclerosis, fibrosis and the expression of fibrogenic molecules; and (4) biomaterials seeded with BMDC can be an alternative route of cellular therapy.
Resumo:
Cell-surface proteoglycans have been known to be involved in many functions including interactions with components of the extracellular microenvironment, and act as co-receptors which bind and modify the action of various growth factors and cytokines. The purpose of this study was to determine the regulation by growth factors and cytokines on cell-surface proteoglycan gene expression in cultured human periodontal ligament (PDL) cells. Subconfluent, quiescent PDL cells were treated with various concentrations of serum, bFGF, PDGF-BB, TGF-beta1, IL-1 beta, and IFN-gamma. RT-PCR technique was used, complemented with Northern blot for syndecan-1, to examine the effects of these agents on the mRNA expression of five cell-surface proteoglycans (syndecan-1, syndecan-2, syndecan-4, glypican and betaglycan). Syndecan-1 mRNA levels increased in response to serum, bFGF and PDGF-BB, but decreased in response to TGF-beta1, IL-1 beta and IFN-gamma. In contrast, syndecan-2 mRNA levels were upregulated by TCF-beta1 and IL-1 beta stimulation, but remained unchanged with the other agents. Betaglycan gene expression decreased in response to serum, but was upregulated by TCF-beta1 and unchanged by the other stimulants. Additionally, syndecan-4 and glypican were not significantly altered in response to the regulator molecules studied, with the exception that glypican is decreased in response to IFN-gamma. These data demonstrate that the gene expression of the five cell-surface proteoglycans studied is differentially regulated in PDL cells lending support to the nation of distinct functions for these cell-surface proteoglycans. (C) 2001 Wiley-Liss, inc.
Resumo:
SUMMARY : Ewing's sarcoma is a member of Ewing's family tumors (ESPY) and the second most common solid bone and soft tissue malignancy of children and young adults. It is associated in 85% of cases with the t(11;22)(q24:q12) chromosomal translocation that generates fusion of the 5' segment of the EWSR1 gene with the 3' segment of the ETS family gene FLI-1. The EWSR1-FLI-1 fusion protein behaves as an aberrant transcriptional activator and is believed to contribute to ESFT development. However, EWSR1-FLI-1 induces growth arrest and apoptosis in normal fibroblasts, and primary cells that are pemissive for its putative oncogenic properties have not been discovered, hampering basic understanding of ESFT biology. Here, we show that EWSR1-FLI-1 alone can transform mouse primary bone marrow-derived mesenchymal progenitor cells and generate tumors that display hallmarks of Ewing's sarcoma, including a small round cell phenotype, expression of ESFT-associated markers, insulin like growth factor-I dependence, and induction or repression of numerous EWSR1-FLI-1 target genes. Consistent with this finding, we tested the possibility that human mesenchymal stem cells (hMSC) might also provide a permissive cellular environment for EWSR1-FLI-1, and could represent the first adequate primary human cellular background for the oncogenic properties of the fusion protein. Indeed, expression of EWSR1-FLI-1 in human mesenchymal stem cells (hMSC) was not only stably maintained without inhibiting proliferation, but induced a gene expression profile bearing striking similarity to that of ESFT, including genes that are among the highest ESFT discriminators. Expression of EWSR1-FLI-1 in hMSCs may recapitulate the initial steps of Ewing's sarcoma development, allowing identification of genes that play an important role early in its pathogenesis. Among relevant candidate transcripts induced by EWSR1-FL/-1 in hMSC we found the polycomb group gene EZH2 which we show to play a critical role in Ewing's sarcoma growth. These observations provide the first identification of candidate primary cells from which ESFTs originate and suggest that EWSR1-FLI-1 expression may constitute the initiating event in ESFT pathogenesis. Le sarcome d' Ewing est un membre de la famille des tumeurs Ewing (ESFT) et représente la deuxième tumeur maligne solide de l'os et des tissus mous chez les enfants et les jeunes adultes. Cette tumeur est associée dans 85% des cas avec la translocation chromosomique t(11;22)(g24:g12), qui génère la fusion entre le segment 5' du gène EWSR1 avec le segment 3' du gène FLI-1, appartenant à la famille des facteurs de transcription ETS. La protéine de fusion EWSR1-FLI-1 qui en dérive joue le rSle d'un facteur de transcription aberrant, et est supposée contribuer de manière décisive au processus de développement des ESFTs. Néanmoins, l'expression de EWSR1-FLI-1 dans des fibroblastes normaux induit un arrêt de croissance et leur apoptose, et les cellules primaires permissives pour les propriétés oncogéniques attribuées à la translocation n'ont pas encore été identifiées, empêchant la compréhension de la biologie de base du sarcome d'Ewing. Dans ce travail on montre que l'expression de EWSR1-FLI-1 uniquement est capable de transformer des cellules souches mésenchymateuses dérivées de la moelle osseuse de la souris, pour générer des tumeurs qui présentent les caractéristiques du sarcome d' Ewing humain, et notamment une morphologie de petites cellules bleues et rondes, l'expression de marqueurs associés aux ESFTs, une dépendance du facteur de croissance IGF-1, et l'induction ou la répression de nombreux gènes cibles connus de EWSR1-FLI-1. Sur la base de ces observations, on a testé la possibilité que les cellules souches mésenchymateuses humaines (hMSCs) puissent aussi fournir un environnement cellulaire permissif pour EWSR1-FLI-1 ; et représenter le premier background cellulaire humain adéquat pour la manifestation du pouvoir oncogénique de la protéine de fusion. En effet, l'expression de EWSR1-FLI-1 dans des cellules souches mésenchymateuses humaines s'est révélée non seulement maintenue, mais elle a induit un profil d'expression génétique étonnamment similaire à celui des ESFTs humains, incluant les gènes qui ont été rapportés comme étant les plus discriminatifs pour ces tumeurs. L'expression de EWSR1-FLI-1 dans les hMSCs pourrait récapituler les étapes initiales du développement du sarcome d' Ewing, et de ce fait consentir à identifier les gènes qui jouent un rôle crucial dans sa pathogenèse précoce. Parmi les transcrits relevant indults par EWSR1-FL/-9 dans les hMSCs nous avons découvert le gène du groupe des polycomb EZH2, que nous avons par la suite démontré jouer un rôle essentiel dans la croissance du sarcome de Ewing. Ces observations apportent pour la première fois l'identification d'une cellule primaire candidate pour représenter la cellule d'origine des ESFTs, et en même temps suggèrent que l'expression de EWSR1-FLI-1 peut constituer l'événement initial dans la pathogenèse du sarcome d' Ewing.
Resumo:
Multipotent mesenchymal stromal cells (MSCs) are a type of adult stem cells that can be easily isolated from various tissues and expanded in vitro. Many reports on their pluripotency and possible clinical applications have raised hopes and interest in MSCs. In an attempt to unify the terminology and the criteria to label a cell as MSC, in 2006 the International Society for Cellular Therapy (ISCT) proposed a standard set of rules to define the identity of these cells. However, MSCs are still extracted from different tissues, by diverse isolation protocols, are cultured and expanded in different media and conditions. All these variables may have profound effects on the selection of cell types and the composition of heterogeneous subpopulations, on the selective expansion of specific cell populations with totally different potentials and ergo, on the long-term fate of the cells upon in vitro culture. Therefore, specific molecular and cellular markers that identify MSCs subsets as well as standardization of expansion protocols for these cells are urgently needed. Here, we briefly discuss new useful markers and recent data supporting the rapidly emerging concept that many different types of progenitor cells are found in close association with blood vessels. This knowledge may promote the necessary technical improvements required to reduce variability and promote higher efficacy and safety when isolating and expanding these cells for therapeutic use. In the light of the discussed data, particularly the identification of new markers, and advances in the understanding of fundamental MSC biology, we also suggest a revision of the 2006 ISCT criteria.
Resumo:
The generation of patient-specific induced pluripotent stem cells (iPSCPSCPSCs) offers unprecedented opportunities for modeling and treating human disease. In combination with gene therapy, the iPSCPSCPSC technology can be used to generate disease-free progenitor cells of potential interest for autologous cell therapy. We explain a protocol for the reproducible generation of genetically corrected iPSCPSCPSCs starting from the skin biopsies of Fanconi anemia patients using retroviral transduction with OCT4, SOX2 and KLF4. Before reprogramming, the fibroblasts and/or keratinocytes of the patients are genetically corrected with lentiviruses expressing FANCA. The same approach may be used for other diseases susceptible to gene therapy correction. Genetically corrected, characterized lines of patient-specific iPSCPSCPSCs can be obtained in 4–5 months.
Resumo:
Three-dimensional models of organ biogenesis have recently flourished. They promote a balance between stem/progenitor cell expansion and differentiation without the constraints of flat tissue culture vessels, allowing for autonomous self-organization of cells. Such models allow the formation of miniature organs in a dish and are emerging for the pancreas, starting from embryonic progenitors and adult cells. This review focuses on the currently available systems and how these allow new types of questions to be addressed. We discuss the expected advancements including their potential to study human pancreas development and function as well as to develop diabetes models and therapeutic cells.
Resumo:
Cancer stem cells (CSCs) display plasticity and self-renewal properties reminiscent of normal tissue stem cells, but the events responsible for their emergence remain obscure. We recently identified CSCs in Ewing sarcoma family tumors (ESFTs) and showed that they retain mesenchymal stem cell (MSC) plasticity. In the present study, we addressed the mechanisms that underlie ESFT CSC development. We show that the EWS-FLI-1 fusion gene, associated with 85%-90% of ESFTs and believed to initiate their pathogenesis, induces expression of the embryonic stem cell (ESC) genes OCT4, SOX2, and NANOG in human pediatric MSCs (hpMSCs) but not in their adult counterparts. Moreover, under appropriate culture conditions, hpMSCs expressing EWS-FLI-1 generate a cell subpopulation displaying ESFT CSC features in vitro. We further demonstrate that induction of the ESFT CSC phenotype is the result of the combined effect of EWS-FLI-1 on its target gene expression and repression of microRNA-145 (miRNA145) promoter activity. Finally, we provide evidence that EWS-FLI-1 and miRNA-145 function in a mutually repressive feedback loop and identify their common target gene, SOX2, in addition to miRNA145 itself, as key players in ESFT cell differentiation and tumorigenicity. Our observations provide insight for the first time into the mechanisms whereby a single oncogene can reprogram primary cells to display a CSC phenotype.