918 resultados para Hip-hoppers - Rivalidade e concepção de talento
Resumo:
Osteoporotic hip fractures (OHF) are not limited to elderly; however, studies in non-elderly are scarce. Thus, the aim of this study was to evaluate co-morbidities in non-elderly patients with OHF in a Community Teaching Hospital. All hospitalizations due to OHF during a 3-year period in a Community Teaching Hospital were retrospectively evaluated for co-morbidities, and patients 18-64 years old were compared with those a parts per thousand yen65 years old. Of all hospitalizations, 232 (0.73%) were due to hip fractures, and 120/232 (51.7%) patients had OHF. The comparison of the 13 (10.8%) OHF patients < 65 years old (47.3 +/- A 9.7 years) with 107 (89.2%) a parts per thousand yen65 years old (80.4 +/- A 7.7 years) revealed a male predominance (61.5 vs. 27.1%, P = 0.022) and a distinct ethnic distribution with a lower proportion of Caucasians in the former (61.5 vs. 86.9%, P = 0.033). Moreover, non-elderly OHF patients had higher frequencies of insulin-dependent DM (38.5 vs. 3.7%, P = 0.001) and alcoholism (38.5 vs. 4.7%, P = 0.001) than aged patients. In contrast, rates of age-related co-morbidities such as stroke (7.7 vs. 18.7%, P = 0.461), heart failure (23.1 vs. 14.0%, P = 0.411), and dementia (7.7 vs. 15.9%, P = 0.689) were comparable in both groups. Logistic regression analysis demonstrated that insulin-dependent DM (OR = 25.4, 95% CI = 4.7-136.8, P < 0.001) and alcoholism (OR = 20.3, 95% CI = 3.9-103.3, P < 0.001) remained as independent risk factors for OHF in non-elderly patients. Osteoporosis is an important cause of HF in Community Hospital. Non-elderly patients with OHF have a peculiar demographic profile and associated co-morbidities. These findings reinforce the need of early osteoporosis diagnosis and rigorous fracture prevention in patients with DM and alcoholism.
Resumo:
The aim of the present study was to evaluate the use MRI to quantify the workload of gluteus medius (GM), vastus medialis (VM) and vastus lateralis (VL) muscles in different types of squat exercises. Fourteen female volunteers were evaluated, average age of 22 +/- 2 years, sedentary, without clinical symptoms, and without history of previous lower limb injuries. Quantitative MRI was used to analyze VM, VL and GM muscles before and after squat exercise, squat associated with isometric hip adduction and squat associated with isometric hip abduction. Multi echo images were acquired to calculate the transversal relaxation times (T2) before and after exercise. Mixed Effects Model statistical analysis was used to compare images before and after the exercise (Delta T2) to normalize the variability between subjects. Imaging post processing was performed in Matlab software. GM muscle was the least active during the squat associated with isometric hip adduction and VM the least active during the squat associated with isometric hip abduction, while VL was the most active during squat associated with isometric hip adduction. Our data suggests that isometric hip adduction during the squat does not increase the workload of VM, but decreases the GM muscle workload. Squat associated with isometric hip abduction does not increase VL workload.
Resumo:
The Hsp70 is an essential molecular chaperone in protein metabolism since it acts as a pivot with other molecular chaperone families. Several co-chaperones act as regulators of the Hsp70 action cycle, as for instance Hip (Hsp70-interacting protein). Hip is a tetratricopeptide repeat protein (TPR) that interacts with the ATPase domain in the Hsp70-ADP state, stabilizing it and preventing substrate dissociation. Molecular chaperones from protozoans, which can cause some neglected diseases, are poorly studied in terms of structure and function. Here, we investigated the structural features of Hip from the protozoa Leishmania braziliensis (LbHip), one of the causative agents of the leishmaniasis disease. LbHip was heterologously expressed and purified in the folded state, as attested by circular dichroism and intrinsic fluorescence emission techniques. LbHip forms an elongated dimer, as observed by analytical gel filtration chromatography, analytical ultracentrifugation and small angle X-ray scattering (SAXS). With the SAXS data a low resolution model was reconstructed, which shed light on the structure of this protein, emphasizing its elongated shape and suggesting its domain organization. We also investigated the chemical-induced unfolding behavior of LbHip and two transitions were observed. The first transition was related to the unfolding of the TPR domain of each protomer and the second transition of the dimer dissociation. Altogether. LbHip presents a similar structure to mammalian Hip, despite their low level of conservation, suggesting that this class of eukaryotic protein may use a similar mechanism of action. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
STUDY DESIGN: Controlled laboratory study using a cross-sectional design. OBJECTIVES: To determine whether there are any differences between the sexes in trunk, pelvis, hip, and knee kinematics, hip strength, and gluteal muscle activation during the performance of a single-leg squat in individuals with patellofemoral pain syndrome (PFPS) and control participants. BACKGROUND: Though there is a greater incidence of PFPS in females, PFPS is also quite common in males. Trunk kinematics may affect hip and knee function; however, there is a lack of studies of the influence of the trunk in individuals with PFPS. METHODS: Eighty subjects were distributed into 4 groups: females with PFPS, female controls, males with PFPS, and male controls. Trunk, pelvis, hip, and knee kinematics and gluteal muscle activation were evaluated during a single-leg squat. Hip abduction and external rotation eccentric strength was measured on an isokinetic dynamometer. Group differences were assessed using a 2-way multivariate analysis of variance (sex by PFPS status). RESULTS: Compared to controls, subjects with PFPS had greater ipsilateral trunk lean (mean +/- SD, 9.3 degrees +/- 5.30 degrees versus 6.7 degrees +/- 3.0 degrees; P = .012), contralateral pelvic drop (10.3 degrees +/- 4.7 degrees versus 7.4 degrees 3.8 degrees; P = .003), hip adduction (14.8 degrees +/- 7.8 degrees versus 10.8 degrees +/- 5.6 degrees; P<.0001), and knee abduction (9.2 degrees +/- 5.0 degrees versus 5.8 degrees +/- 3.4 degrees; P<.0001) when performing a single-leg squat. Subjects with PFPS also had 18% less hip abduction and 17% less hip external rotation strength. Compared to female controls, females with PFPS had more hip internal rotation (P<.05) and less muscle activation of the gluteus medius (P = .017) during the single-leg squat. CONCLUSION: Despite many similarities in findings for males and females with PFPS, there may be specific sex differences that warrant consideration in future studies and when clinically evaluating and treating females with PFPS. J Orthop Sports Phys Ther 2012;42(6):491-501, Epub 8 March 2012. doi:10.2519/jospt.2012.3987
Resumo:
Background: The progression of diabetes and the challenge of daily tasks may result in changes in biomechanical strategies. Descending stairs is a common task that patients have to deal with, however it still has not been properly studied in this population. Objectives: We describe and compare the net joint moments and kinematics of the lower limbs in diabetic individuals with and without peripheral neuropathy and healthy controls during stair descent. Method: Forty-two adults were assessed: control group (13), diabetic group (14), and neuropathic diabetic group (15). The flexor and extensor net moment peaks and joint angles of the hip, knee, and ankle were described and compared in terms of effect size and ANOVAs (p<0.05). Results: Both diabetic groups presented greater dorsiflexion [large effect size] and a smaller hip extensor moment [large effect size] in the weight acceptance phase. In the propulsion phase, diabetics with and without neuropathy showed a greater hip flexor moment [large effect size] and smaller ankle extension [large effect size]. Conclusion: Diabetic patients, even without neuropathy, revealed poor eccentric control in the weight acceptance phase, and in the propulsion phase, they showed a different hip strategy, where they chose to take the leg off the ground using more flexion torque at the hip instead of using a proper ankle extension function.
Resumo:
Abstract Study design Controlled laboratory study. Objectives The purposes of this paper were to investigate (d) whether vastus medialis obliquus (VMO), vastus lateralis longus (VLL) and vastus lateralis obliquus (VLO) EMG activity can be influenced by hip abduction performed by healthy subjects. Background Some clinicians contraindicate hip abduction for patellofemoral patients (with) based on the premise that hip abduction could facilitate the VLL muscle activation leading to a VLL and VMO imbalance Methods and measures Twenty-one clinically healthy subjects were involved in the study, 10 women and 11 men (aged X = 23.3 ± 2.9). The EMG signals were collected using a computerized EMG VIKING II, with 8 channels and three pairs of surface electrodes. EMG activity was obtained from MVIC knee extension at 90° of flexion in a seated position and MVIC hip abduction at 0° and 30° with patients in side-lying position with the knee in full extension. The data were normalized in the MVIC knee extension at 50° of flexion in a seated position, and were submitted to ANOVA test with subsequent application of the Bonferroni multiple comparisons analysis test. The level of significance was defined as p ≤ 0.05. Results The VLO muscle demonstrated a similar pattern to the VMO muscle showing higher EMG activity in MVIC knee extension at 90° of flexion compared with MVIC hip abduction at 0° and 30° of abduction for male (p < 0.0007) and MVIC hip abduction at 0° of abduction for female subjects (p < 0.02196). There were no statistically significant differences in the VLL EMG activity among the three sets of exercises tested. Conclusion The results showed that no selective EMG activation was observed when comparison was made between the VMO, VLL and VLO muscles while performing MVIC hip abduction at 0° and 30° of abduction and MVIC knee extension at 90° of flexion in both male and female subjects. Our findings demonstrate that hip abduction do not facilitated VLL and VLO activity in relation to the VMO, however, this study included only healthy subjects performing maximum voluntary isometric contraction contractions, therefore much remains to be discovered by future research
Evaluation of movements of lower limbs in non-professional ballet dancers: hip abduction and flexion
Resumo:
Background The literature indicated that the majority of professional ballet dancers present static and active dynamic range of motion difference between left and right lower limbs, however, no previous study focused this difference in non-professional ballet dancers. In this study we aimed to evaluate active movements of the hip in non-professional classical dancers. Methods We evaluated 10 non professional ballet dancers (16-23 years old). We measured the active range of motion and flexibility through Well Banks. We compared active range of motion between left and right sides (hip flexion and abduction) and performed correlation between active movements and flexibility. Results There was a small difference between the right and left sides of the hip in relation to the movements of flexion and abduction, which suggest the dominant side of the subjects, however, there was no statistical significance. Bank of Wells test revealed statistical difference only between the 1st and the 3rd measurement. There was no correlation between the movements of the hip (abduction and flexion, right and left sides) with the three test measurements of the bank of Wells. Conclusion There is no imbalance between the sides of the hip with respect to active abduction and flexion movements in non-professional ballet dancers.
Resumo:
OBJECTIVE: To compare the existence of radiographic abnormalities in two groups of patients, those with and without hip pain. METHODS: A total 222 patients were evaluated between March 2007 and April 2009; 122 complained of groin pain, and 100 had no symptoms. The individuals in both groups underwent radiographic examinations of the hip using the following views: anteroposterior, Lequesne false profile, Dunn, Dunn 45º, and Ducroquet. RESULTS: A total of 1110 radiographs were evaluated. Female patients were prevalent in both groups (52% symptomatic, 58% asymptomatic). There were statistically significant differences between the groups in age (p<0.0001), weight (p = 0.002) and BMI (p = 0.006). The positive findings in the group with groin pain consisted of the presence of a bump on the femoral head in the anteroposterior view (p<0.0001) or in the Dunn 45º view (p = 0.008). The difference in the a angle in the anteroposterior, Dunn, Dunn 45º, and Ducroquet views for all of the cases studied was p,0.0001. The joint space measurement differed significantly between groups in the Lequesne view (p = 0.007). The Lequesne anteversion angle (ρ) and the femoral offset measurement also differed significantly (p = 0.005 and p = 0.0001, respectively). CONCLUSIONS: We conclude that the best views for diagnosing a femoroacetabular impingement are the anteroposterior pelvic orthostatic, the Dunn 45º, and the Ducroquet views. The following findings correlated with hip pain: a decrease in the femoral offset, an increase in the α angle, an increase in the Lequesne ρ angle, a decrease in the CE angle of Wiberg, a thinner articular space and the presence of a bump on the femoral head-neck transition.
Resumo:
This research aimed for an extended knowledge and understanding of young people in stigmatized areas and their construction of group identity. With a focus on Roma youths in Konik, Montenegro, and their involvement in hip-hop we wanted to explore what this culture meant to them in relation to their context. An ethnographic approach was used in collecting the empirical data through observations, interpreting music lyrics and conducting qualitative semi-structured interviews. Five young Roma boys from Konik, all involved in hip-hop, were interviewed. Theoretical perspectives on identity, youth culture and stigmatization were central. In addition, Bourdieu’s theory regarding cultural capital was emphasized and connected to youths and hip-hop. The empirical material showed that involvement in hip-hop provided the Roma youths with a group identity that they referred to in positive terms. Contextual factors of stigmatization excluded the Roma group from the majority population and the engagement in hip-hop created a possibility for the youths to be someone. The cultural capital gained through hip-hop was not used to verify and legitimate an authentic Roma identity. It was rather a way for them to create boundaries towards the negative elements in their community.
Resumo:
Primary stability of stems in cementless total hip replacements is recognized to play a critical role for long-term survival and thus for the success of the overall surgical procedure. In Literature, several studies addressed this important issue. Different approaches have been explored aiming to evaluate the extent of stability achieved during surgery. Some of these are in-vitro protocols while other tools are coinceived for the post-operative assessment of prosthesis migration relative to the host bone. In vitro protocols reported in the literature are not exportable to the operating room. Anyway most of them show a good overall accuracy. The RSA, EBRA and the radiographic analysis are currently used to check the healing process of the implanted femur at different follow-ups, evaluating implant migration, occurance of bone resorption or osteolysis at the interface. These methods are important for follow up and clinical study but do not assist the surgeon during implantation. At the time I started my Ph.D Study in Bioengineering, only one study had been undertaken to measure stability intra-operatively. No follow-up was presented to describe further results obtained with that device. In this scenario, it was believed that an instrument that could measure intra-operatively the stability achieved by an implanted stem would consistently improve the rate of success. This instrument should be accurate and should give to the surgeon during implantation a quick answer concerning the stability of the implanted stem. With this aim, an intra-operative device was designed, developed and validated. The device is meant to help the surgeon to decide how much to press-fit the implant. It is essentially made of a torsional load cell, able to measure the extent of torque applied by the surgeon to test primary stability, an angular sensor that measure the relative angular displacement between stem and femur, a rigid connector that enable connecting the device to the stem, and all the electronics for signals conditioning. The device was successfully validated in-vitro, showing a good overall accuracy in discriminating stable from unstable implants. Repeatability tests showed that the device was reliable. A calibration procedure was then performed in order to convert the angular readout into a linear displacement measurement, which is an information clinically relevant and simple to read in real-time by the surgeon. The second study reported in my thesis, concerns the evaluation of the possibility to have predictive information regarding the primary stability of a cementless stem, by measuring the micromotion of the last rasp used by the surgeon to prepare the femoral canal. This information would be really useful to the surgeon, who could check prior to the implantation process if the planned stem size can achieve a sufficient degree of primary stability, under optimal press fitting conditions. An intra-operative tool was developed to this aim. It was derived from a previously validated device, which was adapted for the specific purpose. The device is able to measure the relative micromotion between the femur and the rasp, when a torsional load is applied. An in-vitro protocol was developed and validated on both composite and cadaveric specimens. High correlation was observed between one of the parameters extracted form the acquisitions made on the rasp and the stability of the corresponding stem, when optimally press-fitted by the surgeon. After tuning in-vitro the protocol as in a closed loop, verification was made on two hip patients, confirming the results obtained in-vitro and highlighting the independence of the rasp indicator from the bone quality, anatomy and preserving conditions of the tested specimens, and from the sharpening of the rasp blades. The third study is related to an approach that have been recently explored in the orthopaedic community, but that was already in use in other scientific fields. It is based on the vibration analysis technique. This method has been successfully used to investigate the mechanical properties of the bone and its application to evaluate the extent of fixation of dental implants has been explored, even if its validity in this field is still under discussion. Several studies have been published recently on the stability assessment of hip implants by vibration analysis. The aim of the reported study was to develop and validate a prototype device based on the vibration analysis technique to measure intra-operatively the extent of implant stability. The expected advantages of a vibration-based device are easier clinical use, smaller dimensions and minor overall cost with respect to other devices based on direct micromotion measurement. The prototype developed consists of a piezoelectric exciter connected to the stem and an accelerometer attached to the femur. Preliminary tests were performed on four composite femurs implanted with a conventional stem. The results showed that the input signal was repeatable and the output could be recorded accurately. The fourth study concerns the application of the device based on the vibration analysis technique to several cases, considering both composite and cadaveric specimens. Different degrees of bone quality were tested, as well as different femur anatomies and several levels of press-fitting were considered. The aim of the study was to verify if it is possible to discriminate between stable and quasi-stable implants, because this is the most challenging detection for the surgeon in the operation room. Moreover, it was possible to validate the measurement protocol by comparing the results of the acquisitions made with the vibration-based tool to two reference measurements made by means of a validated technique, and a validated device. The results highlighted that the most sensitive parameter to stability is the shift in resonance frequency of the stem-bone system, showing high correlation with residual micromotion on all the tested specimens. Thus, it seems possible to discriminate between many levels of stability, from the grossly loosened implant, through the quasi-stable implants, to the definitely stable one. Finally, an additional study was performed on a different type of hip prosthesis, which has recently gained great interest thus becoming fairly popular in some countries in the last few years: the hip resurfacing prosthesis. The study was motivated by the following rationale: although bone-prosthesis micromotion is known to influence the stability of total hip replacement, its effect on the outcome of resurfacing implants has not been investigated in-vitro yet, but only clinically. Thus the work was aimed at verifying if it was possible to apply to the resurfacing prosthesis one of the intraoperative devices just validated for the measurement of the micromotion in the resurfacing implants. To do that, a preliminary study was performed in order to evaluate the extent of migration and the typical elastic movement for an epiphyseal prosthesis. An in-vitro procedure was developed to measure micromotions of resurfacing implants. This included a set of in-vitro loading scenarios that covers the range of directions covered by hip resultant forces in the most typical motor-tasks. The applicability of the protocol was assessed on two different commercial designs and on different head sizes. The repeatability and reproducibility were excellent (comparable to the best previously published protocols for standard cemented hip stems). Results showed that the procedure is accurate enough to detect micromotions of the order of few microns. The protocol proposed was thus completely validated. The results of the study demonstrated that the application of an intra-operative device to the resurfacing implants is not necessary, as the typical micromovement associated to this type of prosthesis could be considered negligible and thus not critical for the stabilization process. Concluding, four intra-operative tools have been developed and fully validated during these three years of research activity. The use in the clinical setting was tested for one of the devices, which could be used right now by the surgeon to evaluate the degree of stability achieved through the press-fitting procedure. The tool adapted to be used on the rasp was a good predictor of the stability of the stem. Thus it could be useful for the surgeon while checking if the pre-operative planning was correct. The device based on the vibration technique showed great accuracy, small dimensions, and thus has a great potential to become an instrument appreciated by the surgeon. It still need a clinical evaluation, and must be industrialized as well. The in-vitro tool worked very well, and can be applied for assessing resurfacing implants pre-clinically.
Resumo:
Background. The surgical treatment of dysfunctional hips is a severe condition for the patient and a costly therapy for the public health. Hip resurfacing techniques seem to hold the promise of various advantages over traditional THR, with particular attention to young and active patients. Although the lesson provided in the past by many branches of engineering is that success in designing competitive products can be achieved only by predicting the possible scenario of failure, to date the understanding of the implant quality is poorly pre-clinically addressed. Thus revision is the only delayed and reliable end point for assessment. The aim of the present work was to model the musculoskeletal system so as to develop a protocol for predicting failure of hip resurfacing prosthesis. Methods. Preliminary studies validated the technique for the generation of subject specific finite element (FE) models of long bones from Computed Thomography data. The proposed protocol consisted in the numerical analysis of the prosthesis biomechanics by deterministic and statistic studies so as to assess the risk of biomechanical failure on the different operative conditions the implant might face in a population of interest during various activities of daily living. Physiological conditions were defined including the variability of the anatomy, bone densitometry, surgery uncertainties and published boundary conditions at the hip. The protocol was tested by analysing a successful design on the market and a new prototype of a resurfacing prosthesis. Results. The intrinsic accuracy of models on bone stress predictions (RMSE < 10%) was aligned to the current state of the art in this field. The accuracy of prediction on the bone-prosthesis contact mechanics was also excellent (< 0.001 mm). The sensitivity of models prediction to uncertainties on modelling parameter was found below 8.4%. The analysis of the successful design resulted in a very good agreement with published retrospective studies. The geometry optimisation of the new prototype lead to a final design with a low risk of failure. The statistical analysis confirmed the minimal risk of the optimised design over the entire population of interest. The performances of the optimised design showed a significant improvement with respect to the first prototype (+35%). Limitations. On the authors opinion the major limitation of this study is on boundary conditions. The muscular forces and the hip joint reaction were derived from the few data available in the literature, which can be considered significant but hardly representative of the entire variability of boundary conditions the implant might face over the patients population. This moved the focus of the research on modelling the musculoskeletal system; the ongoing activity is to develop subject-specific musculoskeletal models of the lower limb from medical images. Conclusions. The developed protocol was able to accurately predict known clinical outcomes when applied to a well-established device and, to support the design optimisation phase providing important information on critical characteristics of the patients when applied to a new prosthesis. The presented approach does have a relevant generality that would allow the extension of the protocol to a large set of orthopaedic scenarios with minor changes. Hence, a failure mode analysis criterion can be considered a suitable tool in developing new orthopaedic devices.
Resumo:
L'elaborato prende in esame i fattori che hanno portato allo sviluppo del rap e dell'hip-hop in Russia, prendendo in esame i principali esponenti del genere.
Resumo:
Nowadays the number of hip joints arthroplasty operations continues to increase because the elderly population is growing. Moreover, the global life expectancy is increasing and people adopt a more active way of life. For this reasons, the demand of implant revision operations is becoming more frequent. The operation procedure includes the surgical removal of the old implant and its substitution with a new one. Every time a new implant is inserted, it generates an alteration in the internal femur strain distribution, jeopardizing the remodeling process with the possibility of bone tissue loss. This is of major concern, particularly in the proximal Gruen zones, which are considered critical for implant stability and longevity. Today, different implant designs exist in the market; however there is not a clear understanding of which are the best implant design parameters to achieve mechanical optimal conditions. The aim of the study is to investigate the stress shielding effect generated by different implant design parameters on proximal femur, evaluating which ranges of those parameters lead to the most physiological conditions.