844 resultados para Hip Fractures
Resumo:
We compared revision and mortality rates of 4668 patients undergoing primary total hip and knee replacement between 1989 and 2007 at a University Hospital in New Zealand. The mean age at the time of surgery was 69 years (16 to 100). A total of 1175 patients (25%) had died at follow-up at a mean of ten years post-operatively. The mean age of those who died within ten years of surgery was 74.4 years (29 to 97) at time of surgery. No change in comorbidity score or age of the patients receiving joint replacement was noted during the study period. No association of revision or death could be proven with higher comorbidity scoring, grade of surgeon, or patient gender. We found that patients younger than 50 years at the time of surgery have a greater chance of requiring a revision than of dying, those around 58 years of age have a 50:50 chance of needing a revision, and in those older than 62 years the prosthesis will normally outlast the patient. Patients over 77 years old have a greater than 90% chance of dying than requiring a revision whereas those around 47 years are on average twice as likely to require a revision than die. This information can be used to rationalise the need for long-term surveillance and during the informed consent process.
Resumo:
To clarify the occurrence, causes, severity, and predictors of concomitant injuries in pediatric patients with facial fractures.
Resumo:
Pulmonary fat embolism (PFE) is frequently encountered in blunt trauma. The clinical manifestation ranges from no impairment in light cases to death due to right-sided heart failure or hypoxaemia in severe cases. Occasionally, pulmonary fat embolism can give rise to a fat embolism syndrome (FES), which is marked by multiorgan failure, respiratory disorders, petechiae and often death. It is well known that fractures of long bones can lead to PFE. Several authors have argued that PFE can arise due to mere soft tissue injury in the absence of fractures, a claim other authors disagree upon. In this study, we retrospectively examined 50 victims of blunt trauma with regard to grade and extent of fractures and crushing of subcutaneous fatty tissue and presence and severity of PFE. Our results indicate that PFE can arise due to mere crushing of subcutaneous fat and that the fracture grade correlated well with PFE severity (p = 0.011). The correlation between PFE and the fracture severity (body regions affected by fractures and fracture grade) showed a lesser significant correlation (p = 0.170). The survival time (p = 0.567), the amount of body regions affected by fat crushing (p = 0.336) and the fat crush grade (p = 0.485) did not correlate with the PFE grade, nor did the amount of body regions affected by fractures. These results may have clinical implications for the assessment of a possible FES development, as, if the risk of a PFE is known, preventive steps can be taken.
Resumo:
The WHO fracture risk assessment tool FRAX® is a computer based algorithm that provides models for the assessment of fracture probability in men and women. The approach uses easily obtained clinical risk factors (CRFs) to estimate 10-year probability of a major osteoporotic fracture (hip, clinical spine, humerus or wrist fracture) and the 10-year probability of a hip fracture. The estimate can be used alone or with femoral neck bone mineral density (BMD) to enhance fracture risk prediction. FRAX® is the only risk engine which takes into account the hazard of death as well as that of fracture. Probability of fracture is calculated in men and women from age, body mass index, and dichotomized variables that comprise a prior fragility fracture, parental history of hip fracture, current tobacco smoking, ever long-term use of oral glucocorticoids, rheumatoid arthritis, other causes of secondary osteoporosis, daily alcohol consumption of 3 or more units daily. The relationship between risk factors and fracture probability was constructed using information of nine population-based cohorts from around the world. CRFs for fracture had been identified that provided independent information on fracture risk based on a series of meta-analyses. The FRAX® algorithm was validated in 11 independent cohorts with in excess of 1 million patient-years, including the Swiss SEMOF cohort. Since fracture risk varies markedly in different regions of the world, FRAX® models need to be calibrated to those countries where the epidemiology of fracture and death is known. Models are currently available for 31 countries across the world. The Swiss-specific FRAX® model was developed very soon after the first release of FRAX® in 2008 and was published in 2009, using Swiss epidemiological data, integrating fracture risk and death hazard of our country. Two FRAX®-based approaches may be used to explore intervention thresholds. They have recently been investigated in the Swiss setting. In the first approach the guideline that individuals with a fracture probability equal to or exceeding that of women with a prior fragility fracture should be considered for treatment is translated into thresholds using 10-year fracture probabilities. In that case the threshold is age-dependent and increases from 16 % at the age of 60 ys to 40 % at the age of 80 ys. The second approach is a cost-effectiveness approach. Using a FRAX®-based intervention threshold of 15 % for both, women and men 50 years and older, should permit cost-effective access to therapy to patients at high fracture probability in our country and thereby contribute to further reduce the growing burden of osteoporotic fractures.
Resumo:
FRAX-based cost-effective intervention thresholds in the Swiss setting were determined. Assuming a willingness to pay at 2× Gross Domestic Product per capita, an intervention aimed at reducing fracture risk in women and men with a 10-year probability for a major osteoporotic fracture at or above 15% is cost-effective.
Resumo:
Objective Femoroacetabular impingement may be a risk factor for hip osteoarthritis in men. An underlying hip deformity of the cam type is common in asymptomatic men with nondysplastic hips. This study was undertaken to examine whether hip deformities of the cam type are associated with signs of hip abnormality, including labral lesions and articular cartilage damage, detectable on magnetic resonance imaging (MRI). Methods In this cross-sectional, population-based study in asymptomatic young men, 1,080 subjects underwent clinical examination and completed a self-report questionnaire. Of these subjects, 244 asymptomatic men with a mean age of 19.9 years underwent MRI. All MRIs were read for cam-type deformities, labral lesions, cartilage thickness, and impingement pits. The relationship between cam-type deformities and signs of joint damage were examined using logistic regression models adjusted for age and body mass index. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were determined. Results Sixty-seven definite cam-type deformities were detected. These deformities were associated with labral lesions (adjusted OR 2.77 [95% CI 1.31, 5.87]), impingement pits (adjusted OR 2.9 [95% CI 1.43, 5.93]), and labral deformities (adjusted OR 2.45 [95% CI 1.06, 5.66]). The adjusted mean difference in combined anterosuperior femoral and acetabular cartilage thickness was −0.19 mm (95% CI −0.41, 0.02) lower in those with cam-type deformities compared to those without. Conclusion Our findings indicate that the presence of a cam-type deformity is associated with MRI-detected hip damage in asymptomatic young men.
Resumo:
The iliocapsularis muscle is a little known muscle overlying the anterior hip capsule postulated to function as a stabilizer of dysplastic hips. Theoretically, this muscle would be hypertrophied in dysplastic hips and, conversely, atrophied in stable and well-constrained hips. However, these observations have not been confirmed and the true function of this muscle remains unknown.
Resumo:
Traumatic anterior dislocation of the hip joint is rare. Additional injuries to the hip due to dislocation are even more infrequent. Outcome is limited by osteoarthritic joint degeneration or the occurrence of avascular necrosis of the femoral head.
Resumo:
With the increasing advances in hip joint preservation surgery, accurate diagnosis and assessment of femoral head and acetabular cartilage status is becoming increasingly important. Magnetic resonance imaging (MRI) of the hip does present technical difficulties. The fairly thin cartilage lining necessitates high image resolution and high contrast-to-noise ratio (CNR). With MR arthrography (MRA) using intraarticular injected gadolinium, labral tears and cartilage clefts may be better identified through the contrast medium filling into the clefts. However, the ability of MRA to detect varying grades of cartilage damage is fairly limited and early histological and biochemical changes in the beginning of osteoarthritis (OA) cannot be accurately delineated. Traditional MRI thus lacks the ability to analyze the biological status of cartilage degeneration. The technique of delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) is sensitive to the charge density of cartilage contributed by glycosaminoglycans (GAGs), which are lost early in the process of OA. Therefore, the dGEMRIC technique has a potential to detect early cartilage damage that is obviously critical for decision-making regarding time and extent of intervention for joint-preservation. In the last decade, cartilage imaging with dGEMRIC has been established as an accurate and reliable tool for assessment of cartilage status in the knee and hip joint.This review outlines the current status of dGEMRIC for assessment of hip joint cartilage. Practical modifications of the standard technique including three-dimensional (3D) dGEMRIC and dGEMRIC after intra-articular gadolinium instead of iv-dGEMRIC will also be addressed.
Resumo:
Healed Legg-Calvé-Perthes disease may cause both intra-articular and extra-articular impingement, resulting in a symptomatic hip prior to the onset of osteoarthritis. Various impingement-relieving surgeries have been used in the past; however, the development of the safe surgical dislocation technique has allowed a better understanding of complex deformity that may be present in these hips and hence may improve treatment of these symptomatic prearthritic hips. This article outlines the range of deformities possible in a Perthes hip, and treatment strategies to surgically address these deformities. For Perthes disease good preoperative clinical and radiographic assessment is essential, and intraoperative assessment vital.
Resumo:
To characterize the zonal distribution of three-dimensional (3D) T1 mapping in the hip joint of asymptomatic adult volunteers.