569 resultados para Hidrogênio
Resumo:
This work had to verify the influence of massará, while mortar component, in the process of formation of saltpeter in cementitious plaster walls of buildings. The massará is a ceramic material, texture areno usually found in large volumes argillaceous sediments in Teresina, Piaui State capital, which is associated with the Portland cement mortar form for fixing and finishing in construction. Saltpeter or flowering is a pathology that happens in gypsum wallboard, which invariably reaction between soluble salts present in materials, water and oxygen. This pathology, supposedly credited to massará caused its use to suffer significant reduction in the market of the buildings. Verify this situation with particular scientific rigor is part of the proposal of this work. Grading tests Were performed, consistency limits (LL, LP and IP), determination of potential hydrogen, capacity Exchange (CTC), electrical conductivity (EC), x-ray fluorescence (FRX) and x-ray diffraction (DRX). Massará analysed samples in number six, including sample plastering salitrado presented potential hydrogen medium 5.7 in water and 5.2 on KCl n and electrical conductivity (EC), equal to zero. These results pointed to the affirmative that massará is a material that does not provide salinity content that can be taken into consideration. It is therefore concluded that the material analyzed not competing, at least with respect to the presence of soluble salts, for the formation of saltpeter
Resumo:
Titanium nitride films were grown on glass using the Cathodic Cage Plasma Deposition technique in order to verify the influence of process parameters in optical and structural properties of the films. The plasma atmosphere used was a mixture of Ar, N2 and H2, setting the Ar and N2 gas flows at 4 and 3 sccm, respectively and H2 gas flow varied from 0, 1 to 2 sccm. The deposition process was monitored by Optical Emission Spectroscopy (OES) to investigate the influence of the active species in plasma. It was observed that increasing the H2 gas flow into the plasma the luminescent intensities associated to the species changed. In this case, the luminescence of N2 (391,4nm) species was not proportional to the increasing of the H2 gas into the reactor. Other parameters investigated were diameter and number of holes in the cage. The analysis by Grazing Incidence X-Ray Diffraction (GIXRD) confirmed that the obtained films are composed by TiN and they may have variations in the nitrogen amount into the crystal and in the crystallite size. The optical microscopy images provided information about the homogeneity of the films. The atomic force microscopy (AFM) results revealed some microstructural characteristics and surface roughness. The thickness was measured by ellipsometry. The optical properties such as transmittance and reflectance (they were measured by spectrophotometry) are very sensitive to changes in the crystal lattice of the material, chemical composition and film thicknesses. Therefore, such properties are appropriate tools for verification of this process control. In general, films obtained at 0 sccm of H2 gas flow present a higher transmittance. It can be attributed to the smaller crystalline size due to a higher amount of nitrogen in the TiN lattice. The films obtained at 1 and 2 sccm of H2 gas flow have a golden appearance and XRD pattern showed peaks characteristics of TiN with higher intensity and smaller FWHM (Full Width at Half Maximum) parameter. It suggests that the hydrogen presence in the plasma makes the films more stoichiometric and becomes it more crystalline. It was observed that with higher number of holes in the lid of the cage, close to the region between the lid and the sample and the smaller diameter of the hole, the deposited film is thicker, which is justified by the most probability of plasma species reach effectively the sample and it promotes the growth of the film
Resumo:
The use of raw materials from renewable sources for production of materials has been the subject of several studies and researches, because of its potential to substitute petrochemical-based materials. The addition of natural fibers to polymers represents an alternative in the partial or total replacement of glass fibers in composites. In this work, carnauba leaf fibers were used in the production of biodegradable composites with polyhydroxybutyrate (PHB) matrix. To improve the interfacial properties fiber / matrix were studied four chemical treatments to the fibers..The effect of the different chemical treatments on the morphological, physical, chemical and mechanical properties of the fibers and composites were investigated by scanning electron microscopy (SEM), infrared spectroscopy, X-ray diffraction, tensile and flexural tests, dynamic mechanical analysis (DMA), thermogravimetry (TGA) and diferential scanning calorimetry (DSC). The results of tensile tests indicated an increase in tensile strength of the composites after the chemical treatment of the fibers, with best results for the hydrogen peroxide treated fibers, even though the tensile strength of fibers was slightly reduced. This suggests a better interaction fiber/matrix which was also observed by SEM fractographs. The glass transition temperature (Tg) was reduced for all composites compared to the pure polymer which can be attributed to the absorption of solvents, moisture and other low molecular weight molecules by the fibers
Resumo:
Fuel cells are electrochemical devices that convert chemical energy into electricity. Due to the development of new materials, fuel cells are emerging as generating clean energy generator. Among the types of fuel cells, categorized according to the electrode type, the solid oxide fuel cells (SOFC) stand out due to be the only device entirely made of solid particles. Beyond that, their operation temperature is relatively high (between 500 and 1000 °C), allowing them to operate with high efficiency. Another aspect that promotes the use of SOFC over other cells is their ability to operate with different fuels. The CeO2 based materials doped with rare earth (TR+3) may be used as alternatives to traditional NiO-YSZ anodes as they have higher ionic conductivity and smaller ohmic losses compared to YSZ, and can operate at lower temperatures (500-800°C). In the composition of the anode, the concentration of NiO, acting as a catalyst in YSZ provides high electrical conductivity and high electrochemical activity of reactions, providing internal reform in the cell. In this work compounds of NiO - Ce1-xEuxO2-δ (x = 0.1, 0.2 and 0.3) were synthesized from polymeric precursor, Pechini, method of combustion and also by microwave-assisted hydrothermal method. The materials were characterized by the techniques of TG, TPR, XRD and FEG-SEM. The refinement of data obtained by X-ray diffraction showed that all powders of NiO - Cex-1EuxO2-δ crystallized in a cubic phase with fluorite structure, and also the presence of Ni. Through the characterizations can be proved that all routes of preparation used were effective for producing ceramics with characteristics suitable for application as SOFC anodes, but the microwave-assisted hydrothermal method showed a significant reduction in the average grain size and improved control of the compositions of the phases
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Química, 2016.
Resumo:
The refractory metal carbides have proven important in the development of engineering materials due to their properties such as high hardness, high melting point, high thermal conductivity and high chemical stability. The niobium carbide presents these characteristics. The compounds of niobium impregnated with copper also have excellent dielectric and magnetic properties, and furthermore, the Cu doping increases the catalytic activity in the oxidation processes of hydrogen. This study aimed to the synthesis of nanostructured materials CuNbC and niobium and copper oxide from precursor tris(oxalate) oxiniobate ammonium hydrate through gas-solid and solid-solid reaction, respectively. Both reactions were carried out at low temperature (1000°C) and short reaction time (2 hours). The niobium carbide was produced with 5 % and 11% of copper, and the niobium oxide with 5% of copper. The materials were characterized by X-Ray Diffraction (XRD), Rietveld refinement, Scanning Electron Microscopy (SEM), X-Ray Fluorescence Spectroscopy (XRF), infrared spectroscopy (IR), thermogravimetric (TG) and differential thermal analysis (DTA , BET and particle size Laser. From the XRD analysis and Rietveld refinement of CuNbC with S = 1.23, we observed the formation of niobium carbide and metallic copper with cubic structure. For the synthesis of mixed oxide made of niobium and copper, the formation of two distinct phases was observed: CuNb2O6 and Nb2O5, although the latter was present in small amounts
Resumo:
Chitosan is being studied for use as dressing due their biological properties. Aiming to expand the use in biomedical applications, chitosan membranes were modified by plasma using the following gases: nitrogen (N2), methane (CH4), argon (Ar), oxygen (O2) and hydrogen (H2). The samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle, surface energy and water absorption test. Biological Tests were also performed, such as: test sterilization and proliferation of fibroblasts (3T3 line). Through SEM we observed morphological changes occurring during the plasma treatment, the formation of micro and nano-sized valleys. MFA was used to analyze different roughness parameters (Ra, Rp, Rz) and surface topography. It was found that the treated samples had an increase in surface roughness and sharp peaks. Methane plasma treatment decreased the hydrophilicity of the membranes and also the rate of water absorption, while the other treatments turned the membranes hydrophilic. The sterilization was effective in all treatment times with the following gases: Ar, N2 and H2. With respect to proliferation, all treatments showed an improvement in cell proliferation increased in a range 150% to 250% compared to untreated membrane. The highlights were the treatments with Ar 60 min, O2 60 min, CH4 15 min. Observing the results of the analyzes performed in this study, it appears that there is no single parameter that influences cell proliferation, but rather a set of ideal conditions that favor cell proliferation
Resumo:
Tese de Doutoramento, Química, Especialização em Química Orgânica, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2016
Resumo:
Fuel cells are considered one of the most promising ways of converting electrical energy due to its high yield and by using hydrogen (as fuel) which is considered one of the most important source of clean energy for the future. Rare earths doped ceria has been widely investigated as an alternative material for the electrolyte of solid oxide fuel cells (SOFCs) due to its high ionic conductivity at low operating temperatures compared with the traditional electrolytes based on stabilized zirconia. This work investigates the effect of gallium oxide (Gallia) as a sintering aid in Eu doped ceria ceramic electrolytes since this effect has already been investigated for Gd, Sm and Y doped ceria electrolytes. The desired goal with the use of a sintering aid is to reduce the sintering temperature aiming to produce dense ceramics. In this study we investigated the effects on densification, microstructure and ionic conduction caused by different molar fraction of the dopants europium (10, 15 and 20%) and gallium oxide (0.3, 0.6 and 0.9%) in samples sintered at 1300, 1350 and 1450 0 C. Samaria (10 and 20%) doped ceria samples sintered between 1350 and 1450 °C were used as reference. Samples were synthesized using the cation complexation method. The ceramics powders were characterized by XRF, XRD and SEM, while the sintered samples were investigated by its relative density, SEM and impedance spectroscopy. It was showed that gallia contents up to 0.6% act as excellent sintering aids in Eu doped ceria. Above this aid content, gallia addition does not promote significant increase in density of the ceramics. In Ga free samples the larger densification were accomplished with Eu 15% molar, effect expressed in the microstructure with higher grain growth although reduced and surrounded by many open pores. Relative densities greater than 95 % were obtained by sintering between 1300 and 1350 °C against the usual range 1500 - 1600 0 C. Samples containing 10% of Sm and 0.9% of Ga reached 96% of theoretical density by sintering at 1350 0 C for 3h, a gain compared to 97% achieved with 20% of Sm and 1% of Ga co-doped cerias sintered at 1450 0 C for 24 h as described in the literature. It is found that the addition of gallia in the Eu doped ceria has a positive effect on the grain conductivity and a negative one in the grain boundary conductivity resulting in a small decrease in the total conductivity which will not compromise its application as sintering aids in ceria based electrolytes. Typical total conductivity values at 600 and 700 °C, around 10 and 30 mS.cm -1 respectively were reached in this study. Samples with 15% of Eu and 0.9 % of Ga sintered at 1300 and 1350 °C showed relative densities greater than 96% and total conductivity (measured at 700 °C) between 20 and 33 mS.cm -1 . The simultaneous sintering of the electrolyte with the anode is one of the goals of research in materials for SOFCs. The results obtained in this study suggest that dense Eu and Ga co-doped ceria electrolytes with good ionic conductivity can be sintered simultaneously with the anode at temperatures below 1350 °C, the usual temperature for firing porous anode materials
Resumo:
Ionic oxides with ABO3 structure, where A represents a rare earth element or an alkaline metal and B is a transition metal from group VIII of the periodic table are potential catalysts for oxidation and good candidates for steam reforming reaction. Different methods have been considered for the synthesis of the oxide materials with perovskite structure to produce a high homogeneous material with low amount of impurities and low calcination temperatures. In the current work, oxides with the LaNiO3 formula had been synthesized using the method of the polymeric precursors. The thermal treatment of the materials took place at 300 ºC for 2h. The material supported in alumina and/or zirconia was calcined at 800 ºC temperature for 4h. The samples had been characterized by the following techniques: thermogravimetry; infrared spectroscopy; X-ray diffraction; specific surface area; distribution of particle size; scanning electron microscopy and thermo-programmed reduction. The steam reforming reaction was carried out in a pilot plant using reducing atmosphere in the reactor with a mixture of 10% H2-Argon, a mass about 5g of catalyst, flowing at 50 mL.min-1. The temperature range used was 50 - 1000 oC with a heating rate of 10 oC.min-1. A thermal conductivity detector was used to analyze the gas after the water trapping, in order to permit to quantify the consumption of hydrogen for the lanthanum nickelates (LaNiO3). The results showed that lanthanum nickelate were more efficient when supported in alumina than when supported in zirconia. It was observed that the methane conversion was approximately 100% and the selectivity to hydrogen was about 70%. In all cases were verified low selectivity to CO and CO2
Resumo:
Metallic tantalum has a high commercial value due to intrinsic properties like excellent ductility, corrosion resistance, high melt and boiling points and good electrical and thermal conductivities. Nowadays, it is mostly used in the manufacture of capacitors, due to excellent dielectric properties of its oxides. In the nature, tantalum occurs in the form of oxide and it is extracted mainly from tantalite-columbite ores. The tantalum is usually produced by the reduction of its oxide, using reductants like carbon, silicon, calcium, magnesium and aluminum. Among these techniques, the aluminothermic reduction has been used as the industrial method to produce niobium, tantalum and their alloys, due to the easy removal of the Al and Al2O3 of the system, easing further refining. In conventional aluminothermic reduction an electrical resistance is used to trigger the reaction. This reaction self-propagates for all the volume of material. In this work, we have developed a novel technique of aluminothermic reduction that uses the hydrogen plasma to trigger the reaction. The results obtained by XRD, SEM and EDS show that is possible to obtain a compound rich in tantalum through this technique of aluminothermic reduction in the plasma reactor
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Biologia Molecular, 2016.
Resumo:
A estética dentária tem recebido bastante enfoque nos últimos anos, particularmente devido à importância a que a população atribui à aparência estética do sorriso. É, assim, desejado um sorriso o mais branco possível e que de preferência seja fácil de obter, eficaz, rápido, económico e que seja o menos invasivo possível. No entanto, muitos pacientes apresentam frequentemente dentes com cor alterada, comprometendo desta forma a estética do sorriso. O branqueamento dentário é uma técnica não invasiva, conservadora que não altera a forma natural do dente, e que permite alterações estéticas consideráveis. A procura de uma melhoria estética a todos os níveis, leva a que o Branqueamento dentário se apresente hoje como método de eleição para a remoção da pigmentação dentária. Recorre-se assim a substâncias oxidantes, que na maioria dos casos têm origem no Peróxido de Hidrogénio (H2O2). Um dos efeitos secundários ao Branqueamento, prende-se com a sensibilidade dentária, sendo que esta pode originar algum desconforto ou mesmo ser condicionante para a não realização ou término do tratamento. Para se atingir sucesso num tratamento branqueador é da maior importância o diagnóstico preciso da etiologia da alteração de cor, por isso uma anamnese detalhada e um exame clínico e dentário são da maior importância para se poder aconselhar o paciente pelo melhor tratamento a adotar. O objetivo deste trabalho foi avaliar a informação científica disponível sobre as técnicas disponíveis para realizar branqueamento dentário, vantagens e desvantagens de cada técnica, agentes branqueadores utilizados, mecanismos de ação e os seus efeitos adversos. Para tal foi efetuada uma pesquisa nas bases de dados PubMed e B-On de artigos publicados entre 2006-2016 com as seguintes palavras-chave: dental bleaching, teeth whitening, peroxides, branqueamento dentário, clareamento dentário. O branqueamento dentário, apresenta algumas limitações e contra-indicações, assim como vários efeitos adversos, que devem ser do conhecimento do Médico para este poder intervir devidamente. Foi percetível que um tratamento branqueador depende de inúmeros fatores e que a forma de atuação do profissional é tão importante para o sucesso do tratamento como o tipo de agente branqueador utilizado.
Resumo:
A ocorrência e destino de fármacos no ambiente aquático tem vindo a ser reconhecido como um problema emergente em química ambiental. Alguns compostos são resistentes à degradação nas estações de tratamento de águas residuais, ETARs, enquanto que outros, ainda que sofram degradação parcial, continuam a ser lançados nos meios aquáticos em quantidades apreciáveis. O Ibuprofeno, IB, um dos anti inflamatórios mais consumidos por todo o mundo, é um dos fármacos mais detectados no meio hídrico. Apesar dos sistemas de tratamento convencionais utilizados nas ETARs removerem até 90% do IB das águas residuais, é frequente o efluente descarregado conter ainda quantidades significativas deste poluente. A presença destes compostos no ambiente deve ser avaliada dado que possuem actividade biológica, mesmo a baixas concentrações. Os processos avançados de oxidação com peróxido de hidrogénio, na presença de catalisadores heterogéneos, permitem melhorar significativamente a remoção deste tipo de compostos em águas. Assim, foi objectivo deste trabalho o estudo da utilização de peróxido de hidrogénio como agente oxidante na remoção de IB em soluções aquosas, na presença de complexo de acetilacetonato de Ni (II) disperso em PDMS ou encapsulado em zeólitos NaY. Para o doseamento do fármaco em solução foi necessário desenvolver um método analítico consistindo de separação cromatográfica por HPLC e detecção e quantificação por UV-Vis. Não houve necessidade de recorrer a um passo de pré concentração de amostras por extracção em fase sólida (SPE) devido ao facto das concentrações de IB medidas ao longo do trabalho se terem sempre encontrado acima do LOQ (811 g L-1) do método analítico por injecção directa. Deste estudo pode concluir-se que o catalisador que apresentou melhor actividade catalítica e consequentemente maior remoção do IB em solução, foi o complexo de acetilacetonato de Ni (II), disperso em PDMS. Foi avaliada a influência, na conversão do IB, de diferentes parâmetros como a concentração inicial de peróxido de hidrogénio adicionada, quantidade de catalisador utilizada na mistura reaccional e temperatura. Os resultados permitiram concluir que os aumentos destes parâmetros conduzem a um aumento da actividade catalítica da reacção. A estabilidade catalítica do acetilacetonato de Ni (II)/PDMS, foi avaliada em ensaios consecutivos com a mesma amostra e nas mesmas condições, tendo-se observado que, após 8 utilizações, o catalisador perde ligeiramente a actividade (cerca de 11% do seu valor inicial). ABSTRACT: The presence and fate of pharmaceuticals in the aquatic environment is an emergent issue in environmental chemistry. Some compounds are poorly removed in wastewater treatment plants (WWTPs) while others, in spite of being partially removed, are still present in the WWTPs effluents and discharged in the receiving water bodies. Ibuprofen, IB, a non-steroid anti-inflammatory drug, is one of the most used and also one of the most frequently detected pharmaceutical contaminants in aquifers worldwide. Its removal by conventional wastewater treatment processes used in most WWTPs is usually high (up to 90% of incoming IB may be removed), but duet the high loads present in the influents, still significant amounts of IB usually leave the WWTPs in the treated effluents. The presence of these compounds in the environment must be evaluated considering that they may have some biological activity even at low concentrations. Advanced oxidation processes using hydrogen peroxide, in the presence of heterogeneous catalysts, provide a significantly improved removal of this type of substances from waters. Therefore, it was the aim of this work to study the use of hydrogen peroxide as an oxidizing agent in the removal of IB from aqueous solutions, in the presence of the catalyst nickel (II) acetylacetonate dispersed in PDMS or encapsulated in the NaY zeolite. For the quantification of the pharmaceutical in aqueous solution it was necessary to develop an analytical methodology based in chromatographic separation by HPLC and with UV-Vis detection and quantification. There was no need for a preconcentration step of the samples by solid phase extraction (SPE) as the IB concentrations measured were always above the limit of quantification (811 bL1 of) the analytical method. The results from this study have shown that the catalyst which presented the best catalytic activity and the highest IB removal in solution was nickel (II) acetylacetonate dispersed in PDMS.