931 resultados para Heterogeneous Catalysis
Resumo:
In this paper, we present a methodology for implementing a complete Digital Signal Processing (DSP) system onto a heterogeneous network including Field Programmable Gate Arrays (FPGAs) automatically. The methodology aims to allow design refinement and real time verification at the system level. The DSP application is constructed in the form of a Data Flow Graph (DFG) which provides an entry point to the methodology. The netlist for parts that are mapped onto the FPGA(s) together with the corresponding software and hardware Application Protocol Interface (API) are also generated. Using a set of case studies, we demonstrate that the design and development time can be significantly reduced using the methodology developed.
Resumo:
Stable chromium, molybdenum, tungsten, manganese, rhenium, ruthenium, osmium, cobalt, rhodium, and iridium metal nanoparticles (MNPs) have been reproducibly obtained by facile, rapid (3 min), and energysaving 10 W microwave irradiation (MWI) under an argon atmosphere from their metal–carbonyl precursors [Mx(CO)y] in the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]). This MWI synthesis is compared to UV-photolytic (1000 W, 15 min) or conventional thermal decomposition (180–2508C, 6–12 h) of [Mx(CO)y] in ILs. The MWIobtained nanoparticles have a very small (<5 nm) and uniform size and are prepared without any additional stabilizers or capping molecules as long-term stable M-NP/IL dispersions (characterization by transmission electron microscopy (TEM), transmission electron diffraction (TED), and dynamic light scattering (DLS)). The ruthenium, rhodium, or iridium nanoparticle/IL dispersions are highly active
and easily recyclable catalysts for the biphasic liquid–liquid hydrogenation of cyclohexene to cyclohexane with activities of up to 522 (mol product)(mol Ru)1h1 and 884 (mol product)(molRh)1h1 and give almost quantitative conversion within 2 h at 10 bar H2 and 908C. Catalyst poisoning experiments with CS2 (0.05 equiv per Ru) suggest a heterogeneous surface catalysis of RuNPs.
Chiral supported ionic liquid phase (CSILP) catalysts for greener asymmetric hydrogenation processes
Resumo:
Chiral supported ionic liquid phase (CSILP) catalysts were prepared by physical adsorption (within highly porous carbons or mesoporous silica) of Ir, Ru and Rh complexes as IrCl(COD)-(S, S)-BDPP, [IrCl-(S)-BINAP](2), RuCl(p-cymene)[(S, S)-Ts-DPEN], RuOTf(p-cymene)[(S, S)-Ts-DPEN], [Rh(COD)(S, S)-DIPAMP][BF4], and [Rh(COD)(R, R)-Me-DuPHOS][BF4]. For the syntheses of CSILP catalysts [EMIM][NTf2], [BMIM][BF4] and [BMIM][PF6] ionic liquids were used. Comparative homogeneous and heterogeneous experiments were carried out using the asymmetric hydrogenation of double -C N- and -C C- bonds in trimethylindolenine, 2-methylquinoline and dimethylitaconate, respectively. The conversion and enantioselectivity was found to depend on the nature of the complex (metal and ligand), the immobilization method used, nature of the ionic liquid, nature of the support and the experimental conditions. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Although many gold heterogeneous catalysts have been shown to exhibit significant activity and high selectivity for a wide range of reactions in both the liquid and gas phases, they are prone to irreversible deactivation. This is often associated with sintering or loss of the interaction of the gold with the support. Herein, we report on the use of methyl iodide as a method of dispersing gold nanoparticles supported on silica, titania, and alumina supports. In the case of titania- and alumina-based catalysts, the gold was transformed from nanometer particles into small clusters and some atomically dispersed gold. In contrast, although there was a drop in the gold particle size on the silica support following CH3I treatment, the size remained in the submicrometer range. The structural changes were correlated with changes in the selectivity and activity for ethanol dehydration and benzyl alcohol oxidation. From these observations, it is clear that this treatment provides a method by which deactivated gold catalysts can be reactivated via redispersion of the gold.
Resumo:
A numerical method is developed to simulate complex two-dimensional crack propagation in quasi-brittle materials considering random heterogeneous fracture properties. Potential cracks are represented by pre-inserted cohesive elements with tension and shear softening constitutive laws modelled by spatially varying Weibull random fields. Monte Carlo simulations of a concrete specimen under uni-axial tension were carried out with extensive investigation of the effects of important numerical algorithms and material properties on numerical efficiency and stability, crack propagation processes and load-carrying capacities. It was found that the homogeneous model led to incorrect crack patterns and load–displacement curves with strong mesh-dependence, whereas the heterogeneous model predicted realistic, complicated fracture processes and load-carrying capacity of little mesh-dependence. Increasing the variance of the tensile strength random fields with increased heterogeneity led to reduction in the mean peak load and increase in the standard deviation. The developed method provides a simple but effective tool for assessment of structural reliability and calculation of characteristic material strength for structural design.
Resumo:
A new method to spatially probe heterogeneous catalysed reactions within a packed bed of catalyst has been developed. The spatial resolution is achieved using a stationary perforated capillary coupled to a mass spectrometer while the catalyst bed is moved. The oxidation of CO promoted by H-2 over a Pd catalyst has been used to demonstrate the technique.
Resumo:
For the first time, the hydrogenation/hydrogenolysis of a range of disulfides has been achieved over a supported palladium catalyst using hydrogen under relatively benign conditions. These unexpected results demonstrate that it is possible to avoid the poisoning of the catalyst by either the nitrogen-containing groups or the sulfur species, allowing both efficient reaction and recycling of the catalyst under the proper conditions (e.g., at low temperatures). A slight loss in activity was found on recycling; however, the catalyst activity can be recovered using hydrogen pretreatment. The reaction mechanism for the hydrogenolysis and hydrogenation of ortho-, meta-, and para-dinitrodiphenyldisulfide to the corresponding aminothiophenol has been elucidated. Density functional theory calculations were used to investigate the adsorption mode of the dinitrodiphenyldisulfides; a clear dependence on adsorption geometry was found regarding whether the molecule is cleaved at the S-S bond before the reduction of the nitro group or vice versa. This study demonstrates the versatility of these catalysts for the hydrogenation/hydrogenolysis of sulfur-containing molecules, which normally are considered poisons, and will extend their use to a new family of substrates. (C) 2007 Elsevier Inc. All rights reserved.