924 resultados para HPLC-UV-PAD
Resumo:
A sensitive method for the determination of free fatty acids using 2-(2-(anthracen-10-yl)-1H-naphtho[2,3-dimidazol-1-yl) ethyl-p-toluenesuIfonate (ANITS) as tagging reagent with fluorescence detection has been developed. ANITS could easily and quickly label fatty acids in the presence of the K2CO3 catalyst at 90 degrees C for 40 min in N,N-dimethylformamide solvent. From the extracts of rape bee pollen samples, 20 free fatty acids were sensitively determined. Fatty acid derivatives were separated on a reversed-phase Eclipse XDB-C8 column by HPLC in conjunction with gradient elution. The corresponding derivatives were identified by post-column APCI/MS in positive-ion detection mode. ANITS-fatty acid derivatives gave an intense molecular ion peak at mlz [M+H](+); with MS/MS analysis, the collision-induced dissociation spectra of m/z [M+H](+) produced the specific fragment ions at mlz [M-345](+) and mlz 345.0 (here, m/z 345 is the core structural moiety of the ANITS molecule). The fluorescence excitation and emission wavelengths of the derivatives were lambda(ex) = 250 nm and lambda(em) = 512 nm, respectively. Linear correlation coefficients for all fatty acid derivatives are > 0.9999. Detection limits, at a signal-to-noise ratio of 3 : 1, are 24.76-98.79 fmol for the labeled fatty acids.
Resumo:
This paper describes the simultaneous determination of allantoin, quercetin, and 1-methyl-1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acid (MTCCA) in Nitraria tangutorum Bobr seed by HPLC-APCI-MS and CE (capillary electrophoresis) methods. The final optimized chromatographic conditions were investigated in a reversed-phase Eclipse XDB-C8 column (150 x 4.6 mm, 5 mu m). A seventeen-minute gradient elution, (A: aqueous acetonitrile 20% (v/v); B: aqueous acetonitrile 60% (v/v); C: pure acetonitrile 100%) at a flow rate of 1.0 mL/min was selected for the separation of three natural products with diode array detection (DAD) at 220 nm. A CE experiment was carried out in a fused silica capillary with 32 mmol/L boric acid (pH 10), 32 mmol/L SDS and acetonitrile (10.0%, v/v). The applied potential and temperature was, respectively, set at 19 kV and 25 degrees C. After development, the validation was performed in parallel for HPLC and CE, with the same standards and sample to avoid differences due to the manipulation. The validation parameters of both techniques were adequate for the intended purpose.
Resumo:
A simple and sensitive method for the determination of free fatty acids (FFAs) using acridone-9-ethyl-p-toluenesulfonate (AETS) as a fluorescence derivatization reagent by high performance liquid chromatography (HPLC) has been developed. Free fatty acid derivatives were separated on an Eclipse XDB-C-8 column with a good baseline resolution and detected with the fluorescence of which excitation and emission wavelengths of derivatives were set at lambda(ex) 404 and lambda(em) 440 nm, respectively. Identification of 19 fatty acid derivatives was carried out by online post-column mass spectrometry with an atmospheric pressure chemical ionization (APCI) source under positive-ion detection mode. Nineteen FFAs from the extract of Lomatogonium rotatum are sensitively determined. The results indicate that the plant Lomatogonium rotatum is enriched with an abundance of FFAs and FFAs of higher contents, which mainly focus on even carbon atoms, C-14, C-16, and C-18. The validation of the method including linearity, repeatability, and detection limits was examined. Most linear correlation coefficients for fatty acid derivatives are > 0.9989, and detection limits (at signal-to-noise of 3: 1) are 12.3-43.7 fmol. The relative standard deviations (RSDs) of the peak areas and retention times for 19 FFAs standards are < 2.24% and 0.45%, respectively. The established method is rapid and reproducible for the separation determination of FFAs from the extract of Lomatogonium rotatum with satisfactory results.
Resumo:
A rapid and sensitive liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (HPLC-APCI-MS) assay for the determination of five pharmacologically active compounds (PAC) extracted from the traditional Chinese medicine, Rhodiola , namely salidroside, tyrosol, rhodionin, gallic acid, and ethyl gallate has been developed. In this method, PAC could be baseline separated and detected with DAD at 275 nm. The validation of the method, including sensitivity, linearity, repeatability, and recovery, was examined. The linear calibration curves were acquired with correlation coefficient >0.999 and the limits of detection LOD (at a signal-to-noise ratio=3:1) were between 0.058 and 1.500 mu mol/L. It was found, that the amounts of PAC varied with different species of Rhodiola . The established method is rapid and reproducible for the separation of five natural pharmacologically active compounds from extracts of Rhodiola with satisfactory results.
Resumo:
Experiments were conducted in an alpine Kobresia humilis meadow near Haibei Alpine Meadow Ecosystem Research Station (37degrees29'-37degrees45'N, 101degrees12'-101degrees33'E; altitude 3200 m). Effects of enhanced ultraviolet-B (UV-B) radiation on photosynthesis of the alpine plants of Saussurea superba and Gentiana straminea were investigated. Both species were exposed to a UV-B-BE density at 15.80 kJ m(-2) per day, simulating nearly 14% ozone (O-3) reduction during the plant growing season. Neither photosynthetic CO2 uptake rate nor photosynthetic O-2 evolution rate were decreased after a long period of enhanced UV-B radiation treatment. On the contrary, there was a tendency to increase of both parameters in both species. The photosynthetic pigments were also increased, when expressed on a leaf area basis. UV-B absorbing compounds, detected by the absorbance values at 300 mm, had a tendency to increase in both species after enhanced UV-B radiation. After long-term exposure of plants to enhanced UV-B radiation, leaf morphology was also affected. Leaf thickness in both S. superba and G. straminea were increased significantly (P < 0.001). This supports our hypothesis that the increase of leaf thickness in both species after long-term exposure of enhanced UV-B radiation could compensate for the photodestruction of photosynthetic pigments when light passes through the leaf. Therefore, photosynthesis is not reduced in either species when expressed on leaf area basis. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A novel bonded phase for reversed-phase HPLC was synthesized in two steps. Octylamine was first reacted with beta-(3,4-epoxycyclohexyl)ethyltrimethoxysilane (beta -ECTS) and then the intermediate product was coupled onto porous silica. The prepared packing was characterized by elemental analysis, solid-state C-13 NMR and Fourier transform infrared (FT-IR). Chromatographic evaluations were carried out by using a mixture of organic compounds including acidic, basic and neutral analytes and methanol-water as binary mobile phase. The results showed that the stationary phase has excellent chromatographic properties and is resistant to hydrolysis between pH = 2 similar to 8. It can be used efficiently for the separation of basic compounds.
Resumo:
Silicalite-I, ZSM-5, and Fe-ZSM-5 zeolites prepared from two different silicon sources are characterized by UV resonance Raman (UVRR) spectroscopy, X-ray diffraction (XRD), electron spin resonance (ESR), and UV/visible diffuse reflectance spectroscopy (UV/Vis DRS). A new technique for investigating zeolitic structure, UV resonance Raman spectroscopy selectively enhances the Raman bands associated with framework iron atoms incorporated into MFI-type zeolites, and it is very sensitive in identifying the iron atoms in the framework of zeolites, while other techniques such as XRD, ESR, and UV/Vis DRS have failed in uncovering trace amounts of iron atoms in the framework of zeolites. (C) 2000 Academic Press.