601 resultados para HMG-CoA
Resumo:
Sox genes encode transcription factors belonging to the HMG ( High Mobility Group) superfamily. They are conserved across species and involved in a number of developmental processes. In vitro studies have shown at least one Sox gene to be capable of inducing oncogenic transformation of fibroblast cells. In addition, overexpression and/or amplification of Sox genes are associated with a large number of tumour types in vivo. We review here the available evidence linking Sox gene expression and cancer, and show that this link is supported by extensive EST database analysis. This work provides a basis for further studies aimed at investigating the possible role of Sox genes in the oncogenic process. Copyright (C) 2004 S. Karger AG, Basel.
Resumo:
The SOX family of transcription factors are found throughout the animal kingdom and are important in a variety of developmental contexts. Genome analysis has identified 20 Sox genes in human and mouse, which can be subdivided into 8 groups, based on sequence comparison and intron-exon structure. Most of the SOX groups identified in mammals are represented by a single SOX sequence in invertebrate model organisms, suggesting a duplication and divergence mechanism has operated during vertebrate evolution. We have now analysed the Sox gene complement in the pufferfish, Fugu rubripes, in order to shed further light on the diversity and origins of the Sox gene family. Major differences were found between the Sox family in Fugu and those in humans and mice. In particular, Fugu does not have orthologues of Sry, Sox,15 and Sox30, which appear to be specific to mammals, while Sox19, found in Fugu and zebrafish but absent in mammals, seems to be specific to fishes. Six mammalian Sox genes are represented by two copies each in Fugu, indicating a large-scale gene duplication in the fish lineage. These findings point to recent Sox gene loss, duplication and divergence occurring during the evolution of tetrapod and teleost lineages, and provide further evidence for large-scale segmental or a whole-genome duplication occurring early in the radiation of teleosts. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Although many of the molecular interactions in kidney development are now well understood, the molecules involved in the specification of the metanephric mesenchyme from surrounding intermediate mesoderm and, hence, the formation of the renal progenitor population are poorly characterized. In this study, cDNA microarrays were used to identify genes enriched in the murine embryonic day 10.5 (E10.5) uninduced metanephric mesenchyme, the renal progenitor population, in comparison with more rostral derivatives of the intermediate mesoderm. Microarray data were analyzed using R statistical software to determine accurately genes differentially expressed between these populations. Microarray outliers were biologically verified, and the spatial expression pattern of these genes at E10.5 and subsequent stages of early kidney development was determined by RNA in situ hybridization. This approach identified 21 genes preferentially expressed by the E10.5 metanephric mesenchyme, including Ewing sarcoma homolog, 14-3-3 theta, retinoic acid receptor-alpha, stearoyl-CoA desaturase 2, CD24, and cadherin-11, that may be important in formation of renal progenitor cells. Cell surface proteins such as CD24 and cadherin-11 that were strongly and specifically expressed in the uninduced metanephric mesenchyme and mark the renal progenitor population may prove useful in the purification of renal progenitor cells by FACS. These findings may assist in the isolation and characterization of potential renal stem cells for use in cellular therapies for kidney disease.
Resumo:
The kidneys exhibit age-associated deterioration in function via a loss of 20% to 25% kidney mass, particularly from the renal cortex and increased fibrosis. Oxidative stress has been found to mediate age-associated renal cell injury and cell death, particularly apoptosis. Oxidative stress results from an imbalance between the levels of free radicals generated during aerobic metabolism, inflammation, and infection and the safe breakdown of these species by endogenous and exogenous scavengers. Other factors may influence these pathologies. For example, growth hormone and caloric restriction have been shown to influence life span, although neither method of prolonging life is likely to find general acceptance in humans. Some genetic knockout models offer promise; for example, knockout of the p66 isoform of the Shc gene in mice increases life span by 30%, but appetite, size, and fertility are retained. Whether the increase in life span is via increased kidney health is not yet clear, but decreasing the age-related renal pathologies will no doubt aid in increasing life span and health in general. This review looks at the role and modulation of factors that influence life span, in particular modulation of oxidative stress, with particular relevance to age-related renal pathologies. (C) 2005 by the National Kidney Foundation, Inc.
Resumo:
The Rho family GTPases are regulatory molecules that link surface receptors to organisation of the actin cytoskeleton and play major roles in fundamental cellular processes. In the vasculature Rho signalling pathways are intimately involved in the regulation of endothelial barrier function, inflammation and transendothelial leukocyte migration, platelet activation, thrombosis and oxidative stress, as well as smooth muscle contraction, migration, proliferation and differentiation, and are thus implicated in many of the changes associated with atherogenesis. Indeed, it is believed that many of the beneficial, non-lipid lowering effects of statins occur as a result of their ability to inhibit Rho protein activation. Conversely, the Rho proteins can have beneficial effects on the vasculature, including the promotion of endothelial repair and the maintenance of SMC differentiation. Further identification of the mechanisms by which these proteins and their effectors act in the vasculature should lead to therapies that specifically target only the adverse effects of Rho signalling. (c) 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Intestinal chiral inversion of ibuprofen is still lacking direct evidence. In a preliminary experiment, ibuprofen was found to undergo inversion in Caco-2 cells. This investigation was thus conducted to determine the characteristics and influence of some biochemical factors on the chiral inversion of ibuprofen in Caco-2 cells. The effects of substrate concentration (2.5-40 mu g/ml), cell density (0.5-2 x 10(6) cells/ well), content of serum (0-20%), coexistence of S ibuprofen (corresponding doses), sodium azide (10mm), exogenous Coenzyme A (CoA) (0.1 - 0.4 mm),. and palmitic acid (5-25 mu m) on inversion were examined. A stereoselective HPLC method based on the Chromasil-CHI-TBB column was developed for quantitative analysis of the drug in cell culture medium. The inversion ratio (F-i) and elimination rate constant were calculated as the indexes of inversion extent. Inversion of ibuprofen in Caeo-2 cells was found to be both dose and cell density dependent, indicating saturable characteristics. Addition of serum significantly inhibited the inversion, to an extent of 2.7 fold decrease at 20% content. Preexistence of S enantiomer exerted a significant inhibitory effect (p < 0.01 for all tests). Sodium azide decreased the inversion ratio from 0.43 to 0.32 (p < 0.01). Exogenous CoA and palmitic acid significantly promoted the inversion at all tested doses (p < 0.01 for all tests). This research provided strong evidence to the capacity and capability of intestinal chiral inversion. Although long incubation times up to 120 h were required, Caco-2 cells should be a suitable model for chiral inversion research of 2-APAs considering the human-resourced and well-defined characteristics from the present study.
Resumo:
Propionate, a carbon substrate abundant in many prefermenters, has been shown in several previous studies to be a more favorable substrate than acetate for enhanced biological phosphorus removal (EBPR). The anaerobic metabolism of propionate by polyphosphate accumulating organisms (PAOs) is studied in this paper. A metabolic model is proposed to characterize the anaerobic biochemical transformations of propionate uptake by PAOs. The model is demonstrated to predict very well the experimental data from a PAO culture enriched in a laboratory-scale reactor with propionate as the sole carbon source. Quantitative fluorescence in-situ hybridization (FISH) analysis shows that Candidatus Accumulibacter phosphatis, the only identified PAO to date, constitute 63% of the bacterial population in this culture. Unlike the anaerobic metabolism of acetate by PAOs, which induces mainly poly-beta-hydroxybutyrate (PHB) production, the major fractions of poly-beta-hydroxyalkanoate (PHA) produced with propionate as the carbon source are poly-beta-hydroxyvalerate (PHV) and poly-beta-hydroxy-2-methylvalerate (PH2MV). PHA formation correlates very well with a selective (or nonrandom) condensation of acetyl-CoA and propionyl-CoA molecules. The maximum specific propionate uptake rate by PAOs found in this study is 0.18 C-mol/C-mol-biomass h, which is very similar to the maximum specific acetate uptake rate reported in literature. The energy required for transporting 1 carbon-mole of propionate across the PAO cell membrane is also determined to be similar to the transportation of 1 carbon-mole of acetate. Furthermore, the experimental results suggest that PAOs possess a similar preference toward acetate and propionate uptake on a carbon-mole basis. (c) 2005 Wiley Periodicals, Inc.
Resumo:
In recent times, PSA screening and a substantial increase in prostate needle biopsies have not only resulted in detection of minute foci of cancer but have also very likely resulted in increased detection of atypical glandular proliferations. Not uncommonly, there are only a limited number of atypical glands in these biopsies, and these require careful evaluation to enable an accurate diagnosis. We describe diagnostic implications, use of immunohistochemistry, and clinical significance of these lesions. Foci of atypical glands, also labeled atypical small acinar proliferation of uncertain significance, have features suspicious for but not diagnostic of cancer. Atypical foci include a broad group of lesions of differing clinical significance. These include benign, small acinar proliferations mimicking prostate cancer and atypical glandular proliferations suspicious for carcinoma. Definite diagnosis requires accurate histopathologic assessment and judicious use of immunohistochemistry. Patients with atypical glands on prostate needle biopsy have a high risk for harboring cancer and therefore have an increased risk for having cancer detected in subsequent biopsies.
Resumo:
Background: Protein phosphorylation is an extremely important mechanism of cellular regulation. A large-scale study of phosphoproteins in a whole-cell lysate of Saccharomyces cerevisiae has previously identified 383 phosphorylation sites in 216 peptide sequences. However, the protein kinases responsible for the phosphorylation of the identified proteins have not previously been assigned. Results: We used Predikin in combination with other bioinformatic tools, to predict which of 116 unique protein kinases in yeast phosphorylates each experimentally determined site in the phosphoproteome. The prediction was based on the match between the phosphorylated 7-residue sequence and the predicted substrate specificity of each kinase, with the highest weight applied to the residues or positions that contribute most to the substrate specificity. We estimated the reliability of the predictions by performing a parallel prediction on phosphopeptides for which the kinase has been experimentally determined. Conclusion: The results reveal that the functions of the protein kinases and their predicted phosphoprotein substrates are often correlated, for example in endocytosis, cytokinesis, transcription, replication, carbohydrate metabolism and stress response. The predictions link phosphoproteins of unknown function with protein kinases with known functions and vice versa, suggesting functions for the uncharacterized proteins. The study indicates that the phosphoproteins and the associated protein kinases represented in our dataset have housekeeping cellular roles; certain kinases are not represented because they may only be activated during specific cellular responses. Our results demonstrate the utility of our previously reported protein kinase substrate prediction approach (Predikin) as a tool for establishing links between kinases and phosphoproteins that can subsequently be tested experimentally.
Resumo:
Sox7, Sox17 and Sox18 constitute group F of the Sox family of HMG box transcription factor genes. Dominant-negative mutations in Sox18 underlie the cardiovascular defects observed in ragged mutant mice. By contrast, Sox18(-/-) mice are viable and fertile, and display no appreciable anomaly in their vasculature, suggesting functional compensation by the two other SoxF genes. Here, we provide direct evidence for redundant function of Sox17 and Sox18 in postnatal neovascularization by generating Sox17(+/-)-Sox18(-/-) double mutant mice. Whereas Sox18(-/-) and Sox17(+/-)-Sox18(+/)-mice showed no vascular defects, approximately half of the Sox17(+/-)-Sox18(-/-) pups died before postnatal day 21 (P21). They showed reduced neovascularization in the liver sinusoids and kidney outer medulla vasa recta at P7, which most likely caused the ischemic necrosis observed by P14 in hepatocytes and renal tubular epithelia. Those that survived to adulthood showed similar, but milder, vascular anomalies in both liver and kidney, and females were infertile with varying degrees of vascular abnormalities in the reproductive organs. These anomalies corresponded with sites of expression of Sox7 and Sox17 in the developing postnatal vasculature. In vitro angiogenesis assays, using primary endothelial cells isolated from the P7 livers, showed that the Sox17(+/-)-Sox18(-/-)endothelial cells were defective in endothelial sprouting and remodeling of the vasculature in a phenotype-dependent manner. Therefore, our findings indicate that Sox17 and Sox18, and possibly all three SoxF genes, are cooperatively involved in mammalian vascular development.
Resumo:
Reciprocidade indivíduo-organização e afetividade são dois fenômenos presentes na vida organizacional e que se tornaram tópicos de pesquisa no campo de estudos do comportamento organizacional. Esse estudo teve como objetivo reforçar as evidências empíricas acerca das relações entre cognições de troca indivíduo-organização e afetividade no contexto de trabalho. Para tanto, foram submetidas à teste empírico cinco hipóteses inspiradas em um estudo inédito desenvolvido por Siqueira (2002b). Contou-se com a utilização de um questionário composto por cinco escalas validadas, referentes as variáveis do estudo, que avaliaram percepção de suporte organizacional (PSO), percepção de reciprocidade organizacional (PRO), comprometimento organizacional normativo (CON), satisfação no trabalho (STR) e comprometimento organizacional afetivo (COA). Participaram 275 profissionais, sendo 183 pertencentes ao setor administrativo e 92 ao setor administrativo-acadêmico de uma Instituição de Ensino Superior, situada na região do Grande ABCD Paulista e com inserção no estado de São Paulo. OS participantes do estudo tinham idade média de 32 anos, sendo a maioria (58,2%) do sexo feminino, com escolaridade em nível superior (39,6%) e tempo médio de trabalho na organização de quatro anos. Os dados coletados foram organizados em um banco de dados eletrônico para tratamento estatístico, quando se utilizou o aplicativo SPSS (Statistical Package for the Social Scienses). Foram realizadas análises descritivas das variáveis e análises de correlação e de regressão múltipla para os testes das cinco hipóteses. Todas as hipóteses foram confirmadas. Conclui-se então, que o presente estudo reforça as proposições de Siqueira (2002b) acerca da pertinência de se considerar os três conceitos analisados (PSO, PRO E CON) como integrantes do esquema mental de reciprocidade. Ainda, os resultados do estudo reafirmam as evidências acerca da capacidade preditiva do EMR sobre satisfação no trabalho e comprometimento organizacional afetivo. Por fim, a análise dos dados aponta percepção de suporte organizacional como sendo o componente cognitivo do EMR com maior poder de influência sobre satisfação no trabalho e comprometimento organizacional afetivo. Portanto, cognições acerca das relações de troca social com organizações antecedem satisfação e comprometimento afetivo que, por sua vez, são importantes fatores a favor da organização, contribuindo para sua efetividade.
Resumo:
Oxidative stress and free radical production have been implicated in Alzheimer's disease, where low levels of the antioxidant vitamin C (ascorbate) have been shown to be associated with the disease. In this study, neuroblastoma SH-SY5Y cells were treated with hydrogen peroxide in the presence of ascorbate in order to elucidate the me0chanism(s) of protection against oxidative stress afforded by ascorbate. Protein oxidation, glutathione levels, cell viability and the effects on the proteome and its oxidized counterpart were monitored. SH-SY5Y cells treated with ascorbate prior to co-incubation with peroxide showed increased viability in comparison to cells treated with peroxide alone. This dual treatment also caused an increase in protein carbonyl content and a decrease in glutathione levels within the cells. Proteins, extracted from SH-SY5Y cells that were treated with either ascorbate or peroxide alone or with ascorbate prior to peroxide, were separated by two-dimensional gel electrophoresis and analyzed for oxidation. Co-incubation for 24 hours decreased the number of oxidised proteins (e.g. acyl CoA oxidase 3) and induced brain derived neurotrophic factor (BDNF) expression. Enhanced expression of BDNF may contribute to the protective effects of ascorbate against oxidative stress in neuronal cells.
Resumo:
The metabolism of compounds containing the N-methyl group is discussed with particular consideration being made to the possible role of the product of oxidative metabolism, the N-hydroxymethyl moiety, in the generation of potentially toxic, reactive electrophiles. Particular pathways which are considered are: (i), the production of formaldehyde; (ii), the generation of iminium ions or imines; and (iii), the formation of N-formyl compounds which might act as formylating agents. 4-Chloro-N-(hydroxymethyl)benzamide and 3-(4-chlorophenyl)-1-hydroxy-methyl-1-methylurea (the product of oxidative metabolism of 3-(4-chlorophenyl)-1,1-dimethylurea) are model carbinolamides which do not readily release formaldehyde. The electrophilic properties of these model carbinolamides were investigated: neither reacted with nucleophiles such as cyanide or glutathione under physiological conditions. In contrast, N-(acetoxymethyl)-4-chlorobenzamide yielded the cyanomethylamide with potassium cyanide and S-(4-chlorobenzamidomethyl)glutathione with glutathione. 4-Chloro-N-(hydroxymethyl)benzamide and 3-(4-chlorophenyl)-1,1-dimethylurea were not biotransformed to electrophilic moieties when incubated with mouse hepatic 9000 x g supernatant and Acetyl-CoA or PAPS-generating system. N-(Acetoxymethyl)-4-chlorobenzamide was non-mutagenic to Salmonella typhimurium in the short term bacterial assay; but toxicity to the bacteria was observed. 4-Chloro-N-(hydroxymethyl)benzamide and 3-(4-chlorophenyl)-1,1-dimethylurea showed no mutagenicity or toxicity in the mutagenicity assay including an Aroclor-induced rat hepatic 9000 x g supernatant. Addition of Acetyl-CoA or a PAPS-generating system did not produce a mutagenic response. 4-Chloro-N-formlbenzamide did not act as a formylating agent towards the weak nucleophile aniline. However, 4-chloro-N-formylbenzamide, N-formylbenzamide, 3-(4-chlorophenyl)-1-formyl-1-methylurea and 3-(4-chlorophenyl)-1-formylurea are all metabolised by mouse hepatic mirosomes and post-microsomal supernatant. The results demonstrate the potential for N-hydroxymethyl compounds to generate highly reactive species if these are substrates for conjugation with sulphate (or acetate). The model compounds employed here, apparently do not show any ability to be conjugated themselves, however, other N-hydroxymethyl compounds might be readily conjugated. The formation of N-formyl compounds does not appear to be toxicologically significant, as adjudged on limited experiments performed, but rather represent a detoxification pathway.
Resumo:
The periconceptional period, embracing the terminal stages of oocyte growth and post-fertilisation development up to implantation, is sensitive to parental nutrition. Deficiencies or excesses in a range of macro- and micronutrients during this period can lead to impairments in fertility, fetal development and long-term offspring health. Obesity and genotype-related differences in regional adiposity are associated with impaired liver function and insulin resistance, and contribute to fatty acid-mediated impairments in sperm viability and oocyte and embryo quality, all of which are associated with endoplasmic reticulum stress and compromised fertility. Disturbances to maternal protein metabolism can elevate ammonium concentrations in reproductive tissues and disturb embryo and fetal development. Associated with this are disturbances to one-carbon metabolism, which can lead to epigenetic modifications to DNA and associated proteins in offspring that are both insulin resistant and hypertensive. Many enzymes involved in epigenetic gene regulation use metabolic cosubstrates (e.g. acetyl CoA and S-adenosyl methionine) to modify DNA and associated proteins, and so act as 'metabolic sensors' providing a link between parental nutritional status and gene regulation. Separate to their genomic contribution, spermatozoa can also influence embryo development via direct interactions with the egg and by seminal plasma components that act on oviductal and uterine tissues. © IETS 2014.