955 resultados para HEAVY-HOLE
Resumo:
We have determined the cross-section σ for color center generation under single Br ion impacts on amorphous SiO2. The evolution of the cross-sections, σ(E) and σ(Se), show an initial flat stage that we associate to atomic collision mechanisms. Above a certain threshold value (Se > 2 keV/nm), roughly coinciding with that reported for the onset of macroscopic disorder (compaction), σ shows a marked increase due to electronic processes. In this regime, a energetic cost of around 7.5 keV is necessary to create a non bridging oxygen hole center-E′ (NBOHC/E′) pair, whatever the input energy. The data appear consistent with a non-radiative decay of self-trapped excitons.
Resumo:
During the Arctic Coring Expedition (ACEX), a 428-m-thick sequence of Upper Cretaceous to Quaternary sediments was penetrated. The mineralogical composition of the upper 300 m of this sequence is presented here for the first time. Heavy and clay mineral associations indicate a major and consistent shift in provenance, from the Barents-Kara - western Laptev Sea region, characterized by presence of common clinopyroxene, to the eastern Laptev-East Siberian seas in the upper part of the section, characterized by common hornblende (amphibole). Sea ice originating from the latter source region must have survived at least one summer melt cycle in order to reach the ACEX drill site, if considering modern sea ice trajectories and velocities. This shift in mineral assemblages probably represents the onset of a perennial sea ice cover in the Arctic Ocean, which occurred at about 13 Ma, thus suggesting a coeval freeze in the Arctic and Antarctic regions.
Resumo:
The upper Albian to Coniacian section (Cores 105 to 89) at Site 530 contains rare and poorly preserved coccoliths at a few levels and fine-fraction carbonate ("micarb") at all the levels studied. Dissolution ranking of the most resistant coccolith species is possible. Changes in the dissolution intensity resulting from variations in the organic carbon and carbonate input seem a likely explanation for changes in the relative abundance of fine-fraction carbonates types.
Resumo:
Molecular and isotopic measurements of gas and water obtained from a gas hydrate at Site 570, DSDP Leg 84, are reported. The hydrate appeared to be Structure I and was composed of a solid framework of water molecules enclosing methane and small amounts of ethane and carbon dioxide. Carbon isotopic values for the hydrate-bound methane, ethane, and carbon dioxide were -41 to about -44, -27, and -2.9 per mil, respectively. The d13C-C1 values are consistent with void gas values that were determined to have a biogenic source. A significant thermogenic source was discounted because of high C1/C2 ratios and because the d13C-CO2 values in these sections were also anomalously heavy (or more positive) isotopically, suggesting that the methane was formed biogenically by reduction of heavy CO2 . The isotopically heavy hydrate d13C-C2 is also similar to void gas isotopic compositions and is either a result of low-temperature diagenesis producing heavy C2 in these immature sediment sections or upward migration of deeper thermogenic gas. The salinity of the hydrate water was 2.6 per mil with dDH2O and d18OH2O values of +1 and +2.2 per mil, respectively.