989 resultados para H2O
Resumo:
The synthesis, properties and crystal structure of the cage complex (1-hydroxy-8-methyl-3,6,10,13,15,18-hexaazabicyclo[6.6.5]nonadecane)cobalt(III) chloride hydrate ([Co(Me,OH-absar)] C13.H2O) are reported. The mechanism of the formation of this contracted cavity cage from a nitro-capped hexaazabicycloicosane type cage has been investigated. Treatment of (1-methyl-8-nitro-3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane)cobalt(III) chloride ([Co(Me,NO2-sar)] 3+) with excess base in aqueous solution leads initially to rapid (t1/2 < 1 ms) and reversible deprotonation of one coordinated secondary amine. This species undergoes a retro-Mannich type reaction and imine hydrolysis (t1/2 almost-equal-to 90 s). Quenching the reaction with acid gives rise to a pair of isomeric intermediate species which have been isolated and characterized. They have a pendant arm macrocyclic structure, resulting from the loss of a methylene unit from one of the arms of the cap. Heating either isomer in aqueous solution gives the new cage compound with the contracted cap. It is postulated that this occurs through a Nef reaction, resulting in the formation of a ketone which then condenses with the coordinated primary amine. A comparison with the corresponding bicycloicosane analogue indicates a reduced chromophoric cavity size for the contracted cage. The reduction potential of the cobalt(III)/cobalt(II) couple is 170 mV more negative for the smaller cage, and, in the electronic spectrum of the cobalt(III) complex, the d-d transitions are both shifted to higher energy, corresponding to a stronger ligand field.
Resumo:
Layered lanthanide sulfate compounds with three different structures have been prepared and characterized. The compounds C10H10N2] La(SO4)(2)]center dot 2H(2)O (I), C10H10N2] La(SO4)(2)(H2O)(2)](2) (Ha), C10H10N2]Pr(SO4)(2)(H2O)(2)](2) (IIb), C10H10N2]Nd-2(SO4)(4)(H2O)(2)](2) (IIIa), C10H10N2]Sm-2(SO4)(4)(H2O)(2)](2) (IIIb), and C10H10N2]Eu-2(SO4)(4)(H2O)(2)] 2 (IIIC) have anionic lanthanide sulfate layers separated by protonated bipyridine molecules. The layers are formed by the connectivity between the lanthanide polyhedra and sulfate tetrahedra. The formation of a two-dimensional La-O-La layer (la), Pr-O-Pr chains (IIb), and a tetramer cluster (IIIa) is noteworthy. The compounds exhibit honeycomb (I), square (IIa, IIb), and honeycomb (IIIa-IIIc) net arrangements, when the connectivity between the lanthanide ions is considered. Optical studies indicate the observation of characteristic metal-centered emission at room temperature. The Nd compound (IIIa) exhibits a two-photon upconversion behavior.
Resumo:
While the adsorption of dioxygen at a clean Ni(110) surface gives rise to two O(1s) features at 531 and 530 eV assigned to O-(a) and O2-(a) type species respectively, coadsorption of dioxygen and water mixtures result in the additional formation of hydroxyl species characterized by an O(1s) peak at 532.3 eV. The latter is attributed to the oxygen induced dissociation of water via a low energy pathway involving the O-(a)-type species. The proportions of the O-(a) and the hydroxyl species are greater for small O-2/H2O ratios and lower temperatures (120 K). With increase in temperature, the relative surface concentrations of the O-(a) and the hydroxyl species decrease while there is an increase in the concentration of the oxidic O2-(a) species. Thus, the surface concentrations of both the hydroxyl and the O2-(a) species depend critically on the presence of O- type species. Above 300K the surface chemistry in the main involves the conversion of O- to O2- species via the hydroxyl species.
Resumo:
The Cu atoms in aquabis(tert-butyl acetoacetato)copper(II),[Cu(C8H13O3)(2)(H2O)], and bis(dipivaloylmethanido)copper(II), [Cu(C11H19O2)(2)], adopt square-pyramidal and planar conformations, respectively, with average Cu--O distances of 1.933 Angstrom in the former (not including the water ligand) and 1.892 Angstrom in the latter. It is interesting to note that the lability of the tert-butyl and methyl groups in both structures, which renders even the location of the terminal C atoms difficult, is reduced at T = 130 K, enabling location of all the protons in the difference Fourier map.
Resumo:
We describe in this paper the synthesis and characterization of a new layered phosphate, MoOPO4 . 2H(2)O (I), and its intercalation chemistry. The phosphate I, crystallizing in a tetragonal structure (a = 6.375(7), c = 7.80(1) Angstrom, and Z = 2) similar to that of VOPO4 . 2H(2)O, has been synthesized by the reduction of MoO2(HPO4). H2O (II) using ethylene glycol in an CH3CN medium at similar to 60 degrees C. Interestingly, I could be readily oxidized back to II using Br-2 in CH3CN at room temperature. Considering the close structural relationship existing between I and II, it is likely that the reduction and oxidation of the phosphates proceed by a topotactic mechanism. I is a novel layered host intercalating a variety of organic bases such as n-alkylamines, pyridine, and aniline, mainly through an acid-base interaction. Unlike VOPO4 . 2H(2)O, I does not exhibit reductive intercalation reactivity.
Resumo:
[Fe(N2H5)2(H2O)2Cl2].Cl2, M(r) = 299.65, monoclinic, P2(1)/c, a = 8.027 (1), b = 5.725 (2), c = 11.430 (2) angstrom, beta = 97.08 (1)-degrees, V = 521.3 (2) angstrom 3, Z = 2, D(m) = 1.92, D(x) = 1.910 g cm-3, lambda(Mo K-alpha) = 0.71069 angstrom, mu = 24.5 cm-1, F(000) = 304, T = 295 K, final R = 0.0242 and wR = 0.0292 for 1411 significant [F(o) > 5.0-sigma(F(o))] reflections. The crystal contains discrete Cl- ions and complex [Fe(N2H5)2(H2O)2Cl2]2+ cations. In the complex cation, the Fe atom is bonded to two hydrazinium cations, two Cl atoms and two water molecules. The coordinated atoms are trans to each other. The ions are connected by both N-H...Cl and O-H...Cl type hydrogen bonds.
Resumo:
Reaction of [Ru2O(O(2)CR)(2)(MeCN)(4)(PPh(3))(2)](ClO4)(2) (1) with 1,2-diaminoethane (en) in MeOH-H2O yielded a mixture of products from which a diamagnetic ruthenium(II) complex [Ru(MeCN)(en)(2)(PPh(3))](ClO4)(2) (2) and a paramagnetic ruthenium(III) species [Ru(O(2)CR)(en)(2)(PPh(3))](BPh(4))(2) (3) (R = Ph, a; C6H4-p-Me, b; C6H4-p-OMe, c) were isolated and characterized. The crystal structure of complex 2, obtained by X-ray diffraction analysis, shows a cis arrangement of the unidentate ligands in this octahedral complex. Complex 3 displays an axial EPR spectrum. Complex 2 undergoes two successive irreversible metal-centred one-electron oxidation processes at 1.13 and 1.33 V vs SCE in MeCN-0.1 M [NBu(4)(n)]ClO4 at 50 mV s(-1). The mechanistic aspects of the core cleavage reactions in 1 are discussed.
Resumo:
The ternary metal deoxyribonucleotide complex [Cu(bzim)(5?-dGMP)(H2O)3](bzim = benzimidazole, 5?-dGMP = 2?-deoxyguanosine 5?-monophosphate) has been prepared and the structure analysed by X-ray diffraction. The compound crystallizes in the space group P1 with a= 7.069(6), b= 13.959(10), c= 14.204(12)Å, ?= 75.12(6), ?= 94.15(6), ?= 97.98(6)° and Z= 2. The structure was solved by the heavy-atom method and refined by full-matrix least-squares procedures on the basis of 2813 observed [I[gt-or-equal] 3?(I)] reflections to final R and R? values of 0.050 and 0.052 respectively. There are two independent molecules in the asymmetric unit and both copper(II) centres have square-pyramidal co-ordination geometry. An unusual feature of the structure is the co-ordination of the metal by N(7) of the base, in the presence of a ?-aromatic amine, bzim. The structure is stabilized by intermolecular base�bzim stacking. The nucleotides of both the molecules have an anti conformation about the glycosyl bond, and a gauche-gauche conformation about the C(4?)�C(5?) bond. A feature of particular interest is the unusual sugar conformation. The base furanose rings of the two nucleotide molecules adopt C(3?)-exo/C(2?)-endo pucker and C(3?)-exo pucker respectively.
Resumo:
Five new open-framework compounds of gallium have been synthesized by hydrothermal methods and their structures determined by single crystal X-ray diffraction studies. The compounds, C8N4H26]Ga6F4(PO4)(6)], I, C5N3H11]Ga3F2(PO4)(3)]center dot H2O, II, C6N3H19]Ga-4(C2O4)(PO4)(4)(H2PO4)]center dot 2H(2)O, III, Ga2F3(HPO4)(PO4)]center dot 2H(3)O, IV, and C3N2H5](2)Ga-4(H2O)(3)(HPO3)(7)], V, possess three-dimensional structures. All the compounds are formed by the connectivity between the Ga polyhedra and phosphite/phosphate units. The observation of SBU-6 (I and II) and spiro-5 (IV) secondary building units (SBUs) are noteworthy. The flexibility of the formation of gallium phosphate frameworks has been established by the isolation of two related structures (I and II) from the same SBU units but different organic amines. Some of the present structures have close resemblance to the gallium phosphate phases known earlier. The compounds have been characterized by CHN analysis, powder XRD, IR, and TGA. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Limiting ionic conductance (Lambda(0)) of rigid symmetrical unipositive ions in aqueous solution shows a strong temperature dependence. For example, Lambda(0) more than doubles when the temperature is increased from 283 to 318 K. A marked variation also occurs when the solvent is changed from ordinary water (H2O) to heavy water (D2O). In addition, Lambda(0) shows a nonmonotonic size dependence with a skewed maximum near Cs+. Although these important results have been known for a long time, no satisfactory theoretical explanation exists for these results. In this article we present a simple molecular theory which provides a nearly quantitative explanation in terms of microscopic structure and dynamics of the solvent. A notable feature of this theory is that it does not invoke any nonquantifiable models involving solvent-berg or clatherates. We find the strong temperature dependence of Lambda(0) to arise from a rather large number of microscopic factors, each providing a small but nontrivial contribution, but all acting surprisingly in the same direction. This work, we believe, provides, for the first time, a satisfactory explanation of both the anomalous size and temperature dependencies of Lambda(0) of unipositive ions in molecular terms. The marked change in Lambda(0) as the solvent is changed from H2O to D2O is found to arise partly from a change in the dielectric relaxation and partly from a change in the effective interaction of the ion with the solvent.
Resumo:
The structural state of K-feldspars in the quartzofeldspathic gneisses, charnockites, metapelites and pegmatites from the southern Kamataka, northern Tamil Nadu and southern Kerala high-grade regions of southern India has been characterized using petrographic and powder X-ray diffraction methods. The observed distribution pattern of structural state with a preponderance of disordered K-feldspar polymorphs in granulites compared to the ordered microclines in the amphibolite facies rocks is interpreted to reflect principally the varying H2O contents in the metamorphic-metasomatic fluids across metamorphic grade. The K-feldspars in the pegmatites of granitic derivation and in a pegmatite of inferred metamorphic origin also point to the important role of aqueous fluids in their structural state.
Resumo:
alpha-Hydroxides of nickel(II) and cobalt(II) are hydrotalcite-like phases, possessing a layered double hydroxide (LDH) structure even though there are no trivalent cations in the lattice. While the LDHs acquire a positive charge on the hydroxide layers by the incorporation of trivalent cations, we suggest that the alpha-hydroxides acquire a positive charge by partial protonation of the hydroxyl ions according to the equation M(OH)(2)+xH(+) --> [M(OH)(2-x)(H2O)(x)](x+). As in the LDHs, charge balance is restored by the incorporation of anions in the interlayer region. (C) 1997 Academic Press.
Resumo:
A layered double hydroxide (LDH) with chemical composition LiAl2(OH)(7) . 2H(2)O was prepared via a wet chemical route of gel to crystallite (G-C) conversion at 80 degrees C involving the reaction of hydrated alumina gel, Al2O3.yH(2)O (80 < y < 120) with LiOH (Li2O/Al2O3 greater than or equal to 0.5) in presence of hydrophilic solvents such as ethanol under refluxing conditions. The hydrothermal synthesis was carried out using the same reactants by heating to less than or equal to 140 degrees C in a Teflon-lined autoclave under autogenerated pressure (less than or equal to 20 MPa). Transmission electron microscopy showed needle-shaped aggregates of size 0.04-0.1 mu m for the gel to crystallite conversion product, whereas the hydrothermal products consisted of individual lamellar crystallites of size 0.2-0.5 mu m with hexagonal morphology. The LDH prepared through the gel to crystallite conversion could be converted into LiAl(OH)(4) . H2O or LiAl(OH)(3)NO3 . H2O by imbibition of LiOH or LiNO3, respectively, under hydrothermal conditions. Thermal decomposition of LDH above 1400 degrees C gave rise to LiAl5O8 accompanied by the evaporation of Li2O. LiAl(OH)(4) . H2O and LiAl(OH)(3)NO3 . H2O decomposed in the temperature range 400-1000 degrees C to alpha- or beta-LiAlO2. The compositional dependence of the product, the intermediate phases formed during the heat treatment and the possible reactions involved are described in detail.
Resumo:
Probably the most informative description of the ground slate of a magnetic molecular species is provided by the spin density map. Such a map may be experimentally obtained from polarized neutron diffraction (PND) data or theoretically calculated using quantum chemical approaches. Density functional theory (DFT) methods have been proved to be well-adapted for this. Spin distributions in one-dimensional compounds may also be computed using the density matrix renormalization group (DMRG) formalism. These three approaches, PND, DFT, and DMRG, have been utilized to obtain new insights on the ground state of two antiferromagnetically coupled Mn2+Cu2+ compounds, namely [Mn(Me-6-[14]ane-N-4)Cu(oxpn)](CF3SO3)(2) and MnCu(pba)(H2O)(3) . 2H(2)O, with Me-6-[14]ane-N-4 = (+/-)-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, oxpn = N,N'-bis(3-aminopropyl)oxamido and pba = 1,3-propylenebis(oxamato). Three problems in particular have been investigated: the spin distribution in the mononuclear precursors [Cu(oxpn)] and [Cu(pba)](2-), the spin density maps in the two Mn2+Cu2+ compounds, and the evolution of the spin distributions on the Mn2+ and Cu2+ sites when passing from a pair to a one-dimensional ferrimagnet.
Resumo:
A beta (39-43 aminoacid residues) is the principal peptide component of amyloid deposits in Alzheimer's disease (AD). A beta peptide is derived from the amyloid precursor protein (APP) in which mutations give rise to many forms of familial AD. Aluminium is reported to play a key role in inducing conformational change in the synthetic beta-amyloid peptide (1-40)from alpha-helix to beta-pleated sheet, leading to aggregation and fibrillar formation. We have studied the interaction of amino acid-Al complexes such as D-Asp-Al and L-Glu-Al with A beta(1-40) in TFE/buffer (70% TFE and 30% H2O v/v pH 6.7) mixture using CD spectroscopy. The interaction of either of these amino acid complexes with A beta(1-40) results in loss of alpha-helical content and the peptide is more unstructured compared to free Al3+ in the solution. Our data strongly support the idea, that the Al3+ in the form of aminoacid-Al complexes is more effective in inducing random coil conformation in the A beta peptide than the free Al3+ present in the solution.