920 resultados para Guild Merchant of Preston (Association)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural transformation and ionic transport properties are investigated on wet-chemically synthesized La1-xMnO3 (X=0.0-0.18) compositions. Powders annealed in oxygen/air at 1000-1080 K exhibit cubic symmetry and transform to rhombohedral on annealing at 1173-1573 K in air/oxygen. Annealing above 1773 K in air or in argon/helium at 1473 K stabilized distorted rhombohedral or orthorhombic symmetry. Structural transformations are confirmed from XRD and TEM studies. The total conductivity of sintered disks, measured by four-probe technique, ranges from 5 S cm(-1) at 298 K to 105 S cm(-1) at 1273 K. The ionic conductivity measured by blocking electrode technique ranges from 1.0X10(-6) S cm(-1) at 700 K to 2.0X10(-3) S cm(-1) at 1273 K. The ionic transference number of these compositions ranges from 3.0X10(-5) to 5.0X10(-5) at 1273 K. The activation energy deduced from experimental data for ionic conduction and ionic migration is 1.03-1.10 and 0.80-1.00 eV, respectively. The activation energy of formation, association and migration of vacancies ranges from 1.07 to 1.44 eV. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Use of engineered landfills for the disposal of industrial wastes is currently a common practice. Bentonite is attracting a greater attention not only as capping and lining materials in landfills but also as buffer and backfill materials for repositories of high-level nuclear waste around the world. In the design of buffer and backfill materials, it is important to know the swelling pressures of compacted bentonite with different electrolyte solutions. The theoretical studies on swell pressure behaviour are all based on Diffuse Double Layer (DDL) theory. To establish a relation between the swell pressure and void ratio of the soil, it is necessary to calculate the mid-plane potential in the diffuse part of the interacting ionic double layers. The difficulty in these calculations is the elliptic integral involved in the relation between half space distance and mid plane potential. Several investigators circumvented this problem using indirect methods or by using cumbersome numerical techniques. In this work, a novel approach is proposed for theoretical estimations of swell pressures of fine-grained soil from the DDL theory. The proposed approach circumvents the complex computations in establishing the relationship between mid-plane potential and diffused plates’ distances in other words, between swell pressure and void ratio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular diffusion plays a dominant role in transport of contaminants through fine-grained soils with low hydraulic conductivity. Attenuation processes occur while contaminants travel through the soils. Effective diffusion coefficient (De) is expected to take into consideration various attenuation processes. Effective diffusion coefficient has been considered to develop a general approach for modelling of contaminant transport in soils.The effective diffusion coefficient of sodium in presence of sulphate has been obtained using the column test.The reliability of De, has been checked by comparing theoretical breakthrough curves of sodium ion in soils obtained using advection diffusion equation with the experimental curve.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study examines the geotechnical properties of Indian bentonite clays for their suitability as buffer material in deep geological repository for high-level nuclear wastes. The bentonite samples are characterized for index properties, compaction, hydraulic conductivity and swelling characteristics. Evaluation of geotechnical properties of the compacted bentonite-sand admixtures, from parts of NW India reveals swelling potentials and hydraulic conductivities in the range of 55 % - 108 % and 1.2 X 10 –10 cm/s to 5.42x 10 –11 cm/s respectively. Strong correlation was observed between ESP (exchangeable sodium percentage) and liquid limit/swell potential of tested specimens. Relatively less well-defined trends emerged between ESP and swell pressure/hydraulic conductivity. The Barmer-1 bentonite despite possessing relatively lower montmorillonite content of 68 %, developed higher Atterberg limit and swell potential, and exhibited comparable swelling pressure and hydraulic conductivity as other bentonites with higher montmorillonite contents (82 to 86 %). The desirable geotechnical properties of Barmer clay as a buffer material is attributed to its large ESP (63 %) and, EMDD (1.17 Mg/m3) attained at the experimental compactive stress(5 MPa).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The applicability of Artificial Neural Networks for predicting the stress-strain response of jointed rocks at varied confining pressures, strength properties and joint properties (frequency, orientation and strength of joints) has been studied in the present paper. The database is formed from the triaxial compression tests on different jointed rocks with different confining pressures and different joint properties reported by various researchers. This input data covers a wide range of rock strengths, varying from very soft to very hard. The network was trained using a 3 layered network with feed forward back propagation algorithm. About 85% of the data was used for training and remaining15% for testing the predicting capabilities of the network. Results from the analyses were very encouraging and demonstrated that the neural network approach is efficient in capturing the complex stress-strain behaviour of jointed rocks. A single neural network is demonstrated to be capable of predicting the stress-strain response of different rocks, whose intact strength vary from 11.32 MPa to 123 MPa and spacing of joints vary from 10 cm to 100 cm for confining pressures ranging from 0 to 13.8 MPa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents the characterization of DNAPL and water flow in a fracture under confining pressure. A comprehensive mathematical model and the conditions under which DNAPL will enter an initially water-saturated deforming rock fracture are discussed. A numerical model with which to predict the quantity of each phase in terms of their saturations in deforming rock joint is developed. The effect of varying confining stresses on the traverse time of DNAPL across a fractured aquitard is studied. The sensitivity analysis for physical and hydraulic properties like initial fracture apertures, fracture dips, equivalent fracture aperture and confining pressures are performed and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surfactant-intercalated layered double-hydroxide solid Mg-Al LDH-dodecyl sulfate (DDS) undergoes rapid and facile delamination to its ultimate constituent, single sheets of nanometer thickness and micrometer size, in a nonpolar solvent such as toluene to form stable dispersions. The delaminated nanosheets are electrically neutral because the surfactant chains remain tethered to the inorganic layer even on exfoliation. With increasing volume fraction of the solid, the dispersion transforms from a free-flowing sol to a solidlike gel. Here we have investigated the sol-gel transition in dispersions of the hydrophobically modified Mg-Al LDH-DDS in toluene by rheology, SAXS, and (1)H NMR measurements. The rheo-SAXS measurements show that the sharp rise in the viscosity of the dispersion during gel formation is a consequence of a tactoidal microstructure formed by the stacking of the nanosheets with an intersheet separation of 3.92 nm. The origin and nature of the attractive forces that lead to the formation of the tactoidal structure were obtained from 1D and 2D (1)H NMR measurements that provided direct evidence of the association of the toluene solvent molecules with the terminal methyl of the tethered DDS surfactant chains. Gel formation is a consequence of the attractive dispersive interactions of toluene molecules with the tails of DDS chains anchored to opposing Mg-Al LDH sheets. The toluene solvent molecules function as molecular ``glue'' holding the nanosheets within the tactoidal microstructure together. Our study shows how rheology, SAXS, and NMR measurements complement each other to provide a molecular-level description of the sol-gel transition in dispersions of a hydrophobically modified layered double hydroxide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mining association rules from a large collection of databases is based on two main tasks. One is generation of large itemsets; and the other is finding associations between the discovered large itemsets. Existing formalism for association rules are based on a single transaction database which is not sufficient to describe the association rules based on multiple database environment. In this paper, we give a general characterization of association rules and also give a framework for knowledge-based mining of multiple databases for association rules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy and charge aspects of two types of ion association - between oppositely-charged and between like-charged species - were quantified using the topological analysis of the electron density function derived from the low-temperature X-ray diffraction experiment for a crystal of aminoacetonitrile picrate (sp. gr. Cmca, Z = 8, R = 0.0187), providing an experimental evidence of their ``equal rights'' in crystal packing formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water-ethanol mixtures exhibit many interesting anomalies, such as negative excess partial molar volume of ethanol, excess sound absorption coefficient at low concentrations, and positive deviation from Raoult's law for vapor pressure, to mention a few. These anomalies have been attributed to different, often contradictory origins, but a quantitative understanding is still lacking. We show by computer simulation and theoretical analyses that these anomalies arise from the sudden emergence of a bicontinuous phase that occurs at a relatively low ethanol concentration of x(eth) approximate to 0.06-0.10 (that amounts to a volume fraction of 0.17-0.26, which is a significant range!). The bicontinuous phase is formed by aggregation of ethanol molecules, resulting in a weak phase transition whose nature is elucidated. We find that the microheterogeneous structure of the mixture gives rise to a pronounced nonmonotonic composition dependence of local compressibility and nonmonotonic dependence in the peak value of the radial distribution function of ethyl groups. A multidimensional free energy surface of pair association is shown to provide a molecular explanation of the known negative excess partial volume of ethanol in terms of parallel orientation and hence better packing of the ethyl groups in the mixture due to hydrophobic interactions. The energy distribution of the ethanol molecules indicates additional energy decay channels that explain the excess sound attenuation coefficient in aqueous alcohol mixtures. We studied the dependence of the solvation of a linear polymer chain on the composition of the water-ethanol solvent. We find that there is a sudden collapse of the polymer at x(eth) approximate to 0.05-a phenomenon which we attribute to the formation of the microheterogeneous structures in the binary mixture at low ethanol concentrations. Together with recent single molecule pulling experiments, these results provide new insight into the behavior of polymer chain and foreign solutes, such as enzymes, in aqueous binary mixtures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The availability of the genome sequence of Mycobacterium tuberculosis H37Rv has encouraged determination of large numbers of protein structures and detailed definition of the biological information encoded therein; yet, the functions of many proteins in M. tuberculosis remain unknown. The emergence of multidrug resistant strains makes it a priority to exploit recent advances in homology recognition and structure prediction to re-analyse its gene products. Here we report the structural and functional characterization of gene products encoded in the M. tuberculosis genome, with the help of sensitive profile-based remote homology search and fold recognition algorithms resulting in an enhanced annotation of the proteome where 95% of the M. tuberculosis proteins were identified wholly or partly with information on structure or function. New information includes association of 244 proteins with 205 domain families and a separate set of new association of folds to 64 proteins. Extending structural information across uncharacterized protein families represented in the M. tuberculosis proteome, by determining superfamily relationships between families of known and unknown structures, has contributed to an enhancement in the knowledge of structural content. In retrospect, such superfamily relationships have facilitated recognition of probable structure and/or function for several uncharacterized protein families, eventually aiding recognition of probable functions for homologous proteins corresponding to such families. Gene products unique to mycobacteria for which no functions could be identified are 183. Of these 18 were determined to be M. tuberculosis specific. Such pathogen-specific proteins are speculated to harbour virulence factors required for pathogenesis. A re-annotated proteome of M. tuberculosis, with greater completeness of annotated proteins and domain assigned regions, provides a valuable basis for experimental endeavours designed to obtain a better understanding of pathogenesis and to accelerate the process of drug target discovery. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The disclosure of information and its misuse in Privacy Preserving Data Mining (PPDM) systems is a concern to the parties involved. In PPDM systems data is available amongst multiple parties collaborating to achieve cumulative mining accuracy. The vertically partitioned data available with the parties involved cannot provide accurate mining results when compared to the collaborative mining results. To overcome the privacy issue in data disclosure this paper describes a Key Distribution-Less Privacy Preserving Data Mining (KDLPPDM) system in which the publication of local association rules generated by the parties is published. The association rules are securely combined to form the combined rule set using the Commutative RSA algorithm. The combined rule sets established are used to classify or mine the data. The results discussed in this paper compare the accuracy of the rules generated using the C4. 5 based KDLPPDM system and the CS. 0 based KDLPPDM system using receiver operating characteristics curves (ROC).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report molecular dynamics (MD) simulations to explore the influence of a counterion on the structure and dynamics of cationic and anionic solvation shells for various ions in methanol at 298 K. We show that the variation in ionic size of either the cation or the anion in an ion pair influences the solvation structure of the other ion as well as the diffusivity in an electrolyte solution of methanol. The extent of ionic association between the cation and its counteranion of different ionic sizes has been investigated by analyzing the radial distribution functions (RDFs) and the orientation of methanol molecules in the first solvation shell (FSS) of ions. It is shown that the methanol in the FSS of the anion as well the cation exhibit quite different radial and orientational structures as compared to methanol which lie in the FSS of either the anion or the cation but not both. We find that the coordination number (CN) of F-, Cr-, and I- ions decreases with increasing size of the anion which is contrary to the trend reported for the anions in H2O. The mean residence time (MRT) of methanol molecules in the FSS of ions has been calculated using the stable states picture (SSP) approach. It is seen that the ion-counterion interaction has a considerable influence on the MRT of methanol molecules in the FSS of ions. We also discuss the stability order of the ion-counterion using the potentials of mean force (PMFs) for ion pairs with ions of different sizes. The PMF plots reveal that the Li+-F- pair (small-small) is highly stable and the Li+-I- pair is least stable (small-large) in electrolyte solutions.