995 resultados para Germination parameters
Resumo:
New parameters of nearest-neighbor EAM (1N-EAM), n-th neighbor EAM (NN-EAM), and the second-moment approximation to the tight-binding (TB-SMA) potentials are obtained by fitting experimental data at different temperatures. In comparison with the available many-body potentials, our results suggest that the 1N-EAM potential with the new parameters is the best description of atomic interactions in studying the thermal expansion of noble metals. For mechanical properties, it is suggested that the elastic constants should be calculated in the experimental zero-stress states for all three potentials. Furthermore, for NNEAM and TB-SMA potentials, the calculated results approach the experimental data as the range of the atomic interaction increases from the first-neighbor to the sixth-neighbor distance.
Resumo:
Reversed-phase high performance liquid chromatography (RP-HPLC) was employed to develop predictive models for fish bioconcentration factors (BCF) of organic compounds. Estimation of BCF from RP-HPLC retention parameters on octadecyl-bonded silica gel (ODS), cyanopropyl-bonded silica gel (CN), and phenyl-bonded silica gel (Ph) columns were investigated. The results show that, for a set of compounds belonging to different chemical classes, the CN stationary phase is the best one among the three columns and better than n-octanol/water model for BCF estimation. A multi-column RP-HPLC model, using the retention parameters on the CN and Ph columns as the variables of multiple linear regression equations, was further evaluated to estimate BCF of organic compounds belonging to different chemical classes, and the results show that the multi-column RP-HPLC model is better than that of any single RP-HPLC column for BCF estimation.
Resumo:
In this study, we used a rheological method to study the shape of DNA-cationic lipid complexes and model polyelectrolyte-lipid complexes. We introduced two kinds of anionic polyelectrolytes, sodium polygalacturonate (PGU) and sodium dextran sulfate (DSS), of varying size, as models for DNA. The prepared complexes were incubated under laminar flow conditions. The results show the same quantitative relation between the shape parameter of lipoplexes and the length of anionic polyelectrolytes, including DNA. The rheological behavior of PGU and DSS were similar to that of DNA. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
set of energies at different internuclear distances for the ground electronic state and two excited electronic states of NaH molecule have been calculated using valence internally contracted multireference configuration interaction(MRCI) including Davidson correction and three basis sets. Then, a potential energy curve (PEC) for each state was determined by extrapolating MRCI energies to the complete basis sets limit. Based on the PECs, accurate vibrational energy levels and rotational constants were determined. The computational PECs are were fitted to analytical potential energy functions using the Murrell-Sorbie potential function. Then, accurate spectroscopic parameters were calculated. Compared with experimental results, values obtained with the basis set extrapolation yield a potential energy curve that gives accurate vibrational energy levels, rotational constants and spectroscopic parameters for the NaH molecule. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The equilibrium properties and potential energy curves of the ground electronic state of CaF have been calculated using the Brueckner Doubles calculation with a triples contribution added [BD(T)] and the gradient-corrected density functional theory with three-parameter exact exchange mixing (B3LY-P) method, with 6-311 + G*,6-311 + G(2df,2pd) and 6-311 + G(3df,3pd) basis sets. All the computational PECs are fitted to analytical potential energy functions using Murrell-Sorbie, Huxley and Tang-Toennies potentials. Based on this, the spectroscopic parameters are calculated, and then compared with some other theoretical and experimental data. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Germination of non-dormant upper cocklebur (Xanthium pinsylvanicum Wallr.) seeds was stimulated by not only CS(NH2)2 but also NH2OH, KCN and NaN3. This stimulation was not via the enhancement of aerobic C2H4 production. NH2OH, KCN and NaN3 in certain concentrations promoted the initial growth of axial and/or cotyledonary parts, but the degree of growth promotion by NH2OH, NaN3 and KCN was slight compared with that by CS(NH2)2. As in the case of CS(NH2)2, however, the germinationstimulating effect of NH2OH disappeared rapidly as the preceding imbibition period was prolonged. In contrast, KCN and NaN3 were still effective in stimulating the germination of aged seeds maintained on a water substratum, as previously seen with anaerobiosis. Anaerobic induction was enhanced not only by NaN3 and KCN but also by NH2OH, KNO3, KNO2 CO(NH2)2 and CS(NH2)2 applied during the anaerobic treatment, but without causing an increase in anaerobic production of C2H4. Furthermore, KCN and NaN3, given prior to the anaerobic treatment acted additively with anaerobic induction. The germination-stimulating actions of nitrogenous compounds are discussed in comparison with those of C2H4 and anaerobiosis.
Resumo:
A bar on the Brazos River near Calvert, Texas, has been analyzed in order to determine the geologic meaning of certain grain size parameters and to study the behavior of the size fractions with transport. The bar consists of a strongly bimodal mixture of pebble gravel and medium to fine sand; there is a lack of material in the range of 0.5 to 2 mm, because the source does not supply particles of this size. The size distributions of the two modes, which were established in the parent deposits, are nearly invariant over the bar because the present environment of deposition only affects the relative proportions of the two modes, not the grain size properties of the modes themselves. Two proportions are most common; the sediment either contains no gravel or else contains about 60% gravel. Three sediment types with characteristic bedding features occur on the bar in constant stratigraphic order, with the coarsest at the base. Statistical analysis of the data is based on a series of grain size parameters modified from those of Inman (1952) to provide a more detailed coverage of non-normal size curves. Unimodal sediments have nearly normal curves as defined by their skewness and kurtosis. Non-normal kurtosis and skewness values are held to be the identifying characteristics of bimodal sediments even where such modes are not evident in frequency curves. The relative proportions of each mode define a systematic series of changes in numerical properties; mean size, standard deviation and skewness are shown to be linked in a helical trend, which is believed to be applicable to many other sedimentary suites. The equations of the helix may be characteristic of certain environments. Kurtosis values show rhythmic pulsations along the helix and are diagnostic of two-generation sediments.
Resumo:
Twenty-five samples from six subenvironments in the barrier-lagoon systems in northeastern Shandong province, China, are examined. A statistical method is used to study the roundness variation of grains of different sizes. Roundness of very fine pebble and very coarse sand varies significantly in different subenvironments. It is possible to discriminate among aqueous depositional environments using the roundness of grains of these sizes. Roundness of grains finer than 0.84 φ is not distinguishable in different subenvironments.
Resumo:
Phyllospadix iwatensis Makino and phyllospadix japonicus Makino have similar frunt morphology and anatomy.The rhomboid fruit of Japanese phyllospadix is dark brown in colour and is characterized by two arms bearing stiff inflected bristles which can act as an anchoring system. The fruit covering consists of a thin cuticular seed coat and pericarp remains mainly fibrous endocarp. In the groove region of the fruit.the cuticular seed coat and endocarp are replaced by nucellus cells with wall in growths and crushed pigment strands with lignified walls.these tissues appera to control the transfer of nutrients to developing seed.the seed is oval with a small embryo and a large hypocotyl. the embryo is straight and simple,with the plumule containing three leaf primordia and a pair of root primordia surrounded by a cotyledon.the hypocotyl has large vontral lobe containing central provascular tissue and two small dorsal lobes.the hypocotyl contains starch.lipid and protein.and acts as a nutrient store.the seed of P.iwatensis has a dormancy period of 2-6 weeks and germination eventually reaches-65%.but is not synchronized.during germination the leaves emerge first.and then after at least three young leaves have formed and abseised.the roots emerge,usually?6 months after the commencement of germination.Utilizaton of the nutrient reserves is initially from the perihpery of the hypocotyl and then progressively towards its centre.
Resumo:
Seeds of Halophila engelmannii Aschers., that were collected in Redfish Bay, Texas, at weekly intervals from mid-May to mid-June 1986, began to germinate 3–4 weeks after collection. Most of the collections subsequently showed an increase in the rate of germination under increased light intensity and all had a stoppage of germination after transfer to darkness, indicating a light requirement to break endogenous seed dormancy. During the 5 weeks after seeds germinated, seedlings in soil culture produced a rosette of six leaves before the appearance of a rhizome bud in the axil of the third leaf. The first node of the rhizome produced a root and an upright shoot with a pseudowhorl of three to five leaves.
Resumo:
Flowering and seed-bank development of annual Zostera marina L. and perennial Z. noltii hornem. were studied in the Zandkreek (S.W. Netherlands). Flowering of Z. noltii started at the end of June and continued until the end of September. A maximum of ca. 1000 flowering shoots (11% of the total amount of shoots per square metre) occurred in early August. Flowering of Z. marina started at the end of July and continued throughout October. Seed banks of both species appeared to be annual. Actual seed densities of Z. noltii were much lower than predicted on the basis of the amount of inflorescences.Germination was studied in the laboratory in relation to temperature (10, 20 and 30°C), salinity (1.0, 10.0, 20.0, 30.0 and 40.0‰) and stratification (at 4°C). Both species showed a maximal germination at 30°C and 1.0‰ salinity, decreasing with higher salinities and lower temperatures. Stratification stimulated germination only at salinities 20.0‰. Desiccation and anaerobia were lethal to Z. marina seeds. Seedlings of Z. marina survived best at 10°C and 10.0–20.0‰ salinity and those of Z. noltii survived best at 10°C and 1.0‰ salinity. Overall, seedlings of Z. marina survived better than those of Z. noltii.
Resumo:
The unique surface-sensitive properties make quantum dots (QDs) great potential in the development of sensors for various analytes. However, quantum dots are not only sensitive to a certain analyte, but also to the surrounding conditions. The controlled response to analyte may be the first step in the designing of functional quantum dots sensors. In this study, taking the quenching effect of benzoquinone (BQ) on CdTe QDs as model, several critical parameters of buffer solution conditions with potential effect on the sensors were investigated. The pH value and the concentration of sodium citrate in the buffer solution critically influenced the quenching effects of BQ.
Resumo:
Molecular dynamics simulations are adopted to calculate the equation of state characteristic parameters P*, rho*, and T* of isotactic polypropylene (iPP) and poly(ethylene-co-octene) (PEOC), which can be further used in the Sanchez-Lacombe lattice fluid theory (SLLFT) to describe the respective physical properties. The calculated T* is a function of the temperature, which was also found in the literature. To solve this problem, we propose a Boltzmann fitting of the data and obtain T* at the high-temperature limit. With these characteristic parameters, the pressure-volume-temperature (PVT) data of iPP and PEOC are predicted by the SLLFT equation of state. To justify the correctness of our results, we also obtain the PVT data for iPP and PEOC by experiments. Good agreement is found between the two sets of data. By integrating the Euler-Lagrange equation and the Cahn-Hilliard relation, we predict the density profiles and the surface tensions for iPP and PEOC, respectively. Furthermore, a recursive method is proposed to obtain the characteristic interaction energy parameter between iPP and PEOC. This method, which does not require fitting to the experimental phase equilibrium data, suggests an alternative way to predict the phase diagrams that are not easily obtained in experiments.