957 resultados para Geological Sequestration
Resumo:
It is well accepted that the climate impact of large explosive volcanic eruptions results from reduction of solar radiation following atmospheric conversion of magmatic SO emissions into HSO aerosols. Thus, understanding the fate of SO in the eruption plume is crucial for better assessing volcanic forcing of climate. Here we focus on the potential of tephra to interact with and remove SO gas from the eruptive plume. Scavenging of SO by tephra is generally assumed to be driven by in-plume, low-temperature reactions between HSO condensates and tephra particles. However, the importance of SO gas-tephra interaction above the dew point temperature of HSO (190-200°C) has never been constrained. Here we report the results of an experimental study where silicate glasses with representative volcanic compositions were exposed to SO in the temperature range 25-800°C. We show that above 600°C, the uptake of SO on glass exhibits optimal efficiency and emplaces surficial CaSO deposits. This reaction is sustained via Ca diffusion from the bulk to the surface of the glass particles. At 800°C, the diffusion coefficient for Ca in the glasses was in the range 10-10cms. We suggest that high temperature SO scavenging by glass-rich tephra proceeds by the same Ca diffusion-driven mechanism. Using a simple mathematical model, we estimated SO scavenging efficiencies at 800°C varying from
Resumo:
In the Florida Everglades, tree islands are conspicuous heterogeneous elements in a complex wetland landscape. I investigated the effects of increased freshwater flow in southern Everglades seasonally flooded tree islands, and characterized biogeochemical interactions among tree islands and the marsh landscape matrix, specifically examining hydrologic flows of nitrogen (N), and landscape N sequestration capacity. I utilized ecological trajectories of key ecosystem variables to differentiate effects of increased sheetflow and hydroperiod. I utilized stable isotope analyses and nutrient content of tree island ecosystem components to test the hypothesis that key processes in tree island nitrogen cycling would favor ecosystem N sequestration. I combined estimates of tree island ecosystem N standing stocks and fluxes, soil and litter N transformation rates, and hydrologic inputs of N to quantify the net sequestration of N by a seasonally flooded tree island. ^ Results show that increased freshwater flow to seasonally flooded tree islands promoted ecosystem oligotrophy, whereas reduced flows allowed some plant species to cycle P less efficiently. As oligotrophy is a defining parameter of Everglades wetlands, and likely promotes belowground production and peat development, reintroducing freshwater flow from an upstream canal had a favorable effect on ecosystem dynamics of tree islands in the study area. Important factors influencing the stable isotopic composition of nitrogen and carbon were: (1) a contribution to soil N by soil invertebrates, animal excrement, and microbes, (2) a possible NO3 source from an upstream canal and an "open" ecosystem N cycle, and (3) greater availability of phosphorus in tree islands relative to the marsh landscape, suggesting that tree island N cycling favors N sequestration. Hydrologic sources of N were dominated by surface water loads of NO3- and NH 4+, and an important soil N transformation promoting the net loss of surface water DIN was nitrate immobilization associated with soils and surficial leaf litter. The net inorganic N sequestration capacity of a seasonally flooded tree island was 50 g yr-1 m -2. Thus, tree islands likely have an important function in landscape sequestration of inorganic N, and may reduce significant anthropogenic N loads to downstream coastal systems. ^
Resumo:
This dictionary provides a portable, easy to use, and inexpensive bilingual list of geological terms for those in the earth sciences and engineering who have to work in both English and Spanish. The dictionary includes two major sections. The first comprises English terms, arranged alphabetically, alongside their Spanish equivalents; the second section comprises Spanish terms arranged alphabetically, alongside their English equivalents.
Resumo:
The hallmark of oceanic anoxic event 1a (OAE1a) (early Aptian ~125 Ma) corresponds to worldwide deposition of black shales with total organic carbon (TOC) content > 2% and a δ13C positive excursion up to ~5‰. OAE1a has been related to large igneous province volcanism and dissociation of methane hydrates during the Lower Cretaceous. However, the occurrence of atypical, coeval and diachronous organic-rich deposits associated with OAE1a, which are also characterized by positive spikes of the δ 13C in epicontinental to restricted marine environments of the Tethys Ocean, indicates localized responses decoupled from complex global forcing factors. ^ The present research is a high-resolution, multiproxy approach to assess the paleoenvironmental conditions that led to enhanced carbon sequestration from the late Barremian to the middle Aptian in a restricted, Tethyan marginal basin prior to and during OAE1a. I studied the lower 240 m of the El Pui section, Organyà Basin, Spanish Pyrenees. The basin developed as the result of extensional tectonism linked to the opening of the Atlantic Ocean. At the field scale the section consists of a sequence of alternating beds of cm – m-scale, medium-gray to grayish-black limestones and marlstones with TOC up to ~4%. ^ The results indicate that the lowest 85 m of the section, from latest Barremian -earliest Aptian, characterize a deepening phase of the basin concomitant with sustained riverine flux and intensified primary productivity. These changes induced a shift in the sedimentation pattern and decreased the oxygen levels in the water column through organic matter respiration and limited ventilation of the basin. ^ The upper 155 m comprising the earliest – late-early Aptian document the occurrence of OAE1a and its associated geochemical signatures (TOC up to 3% and a positive shift in δ13C of ~5‰). However, a low enrichment of redox-sensitive trace elements indicates that the basin did not achieve anoxic conditions. The results also suggest that a shallower-phase of the basin, coeval with platform progradation, may have increased ventilation of the basin at the same time that heightened sedimentation rates and additional input of organic matter from terrestrial sources increased the burial and preservation rate of TOC in the sediment.^
Resumo:
In 1974, the Geological Survey of Japan began its systematic investigation of manganese nodules in the Central Pacific Basin on the new geological research vessel Hakurei Maru. The first cruise (GH 74-5) was carried out over an eastern part area of the Basin (6°-10°30'N, 164°30'-171°30'W), and the authors report here the preliminary results on the occurrence of manganese nodule deposits, paying particular consideration to their relationship to submarine topography and surficial and sub-bottom sedimentary facies. The surveyed area comprises a deep-sea basin at 5,000-5,400 m, defined to the north and east by the chain of seamounts and guyots of the Christmas Ridge. The deep-sea basin is divided roughly into 2 contrasting topographic features. The eastern part is characterised by flattened topography resulting from continuous deposition of turbidities; the meridian and western parts are characterised by gently rolling topography and the existence of a large number of deep-sea hills. Manganese nodules are almost lacking in the former flattened eastern area, whereas they are widely distributed in the latter rolling meridian and western parts. The population density of nodules varies from less than 1 Kg/m² to 26 kg/m² and the higher density is found in the siliceous-calcareous ooze zone of rather small, flat basins surrounded by deep-sea hills. The density is closely related to the thickness of the transparent layer obtained by 3.5 kHz PDR profiling over the whole area. Considering the various data of grab sampling, 3.5 kHz PDR profiling and to a lesser extent of deep-sea television and camera observations, the most promising manganese field in the present area seems to be confined to the north of the western sector of the area.
Resumo:
Peer reviewed
Resumo:
© 2016 John Wiley & Sons Ltd. Funded by DEVIL project. Grant Number: NE/M021327/1 Global Carbon Project MaGNET programme EU FP7 SmartSoil project. Grant Number: 289694
Resumo:
© 2016 Institute of Materials, Minerals and Mining and The AusIMM Published by Taylor & Francis on behalf of the Institute and The AusIMM
Resumo:
X-ray fluorescence (XRF) core-scanning is a fast and nondestructive technique to assess elemental variations of unprocessed sediments. However, although the exposure time of XRF-scanning directly affects the scanning counts and total measurement time, only a few studies have considered the influence of exposure time during the scan. How to select an optimal exposure time to achieve reliable results and reduce the total measurement time is an important issue. To address this question, six geological reference materials from the Geological Survey of Japan (JLK-1, JMS-1, JMS-2, JSD-1, JSD-2, and JSD-3) were scanned by the Itrax-XRF core scanner using the Mo- and the Cr-tube with different exposure times to allow a comparison of scanning counts with absolute concentrations. The regression lines and correlation coefficients of elements that are generally used in paleoenvironmental studies were examined for the different exposure times and X-ray tubes. The results show that for those elements with relatively high concentrations or high detectability, the correlation coefficients are higher than 0.90 for all exposure times. In contrast, for the low detectability or low concentration elements, the correlation coefficients are relatively low, and improve little with increased exposure time. Therefore, we suggest that the influence of different exposure times is insignificant for the accuracy of the measurements. Thus, caution must be taken when interpreting the results of elements with low detectability, even when the exposure times are long and scanning counts are reasonably high.
Resumo:
Corel Geological Drafting Kit (CGDK), a program written in VBA, has been designed to assist geologists and geochemists with their drafting work. It obtains geological data from a running Excel application directly, and uses the data to plot geochemical diagrams and to construct stratigraphic columns. The software also contains functions for creating stereographic projections and rose diagrams, which can be used for spatial analysis, on a calibrated geological map. The user-friendly program has been tested to work with CorelDRAW 13 - 14 - 15 and Excel 2003 - 2007.
Resumo:
An integrated, high-resolution chemostratigraphic (C, O and Sr isotopes) and magnetostratigraphic study through the upper Middle Cambrian - lowermost Ordovician shallow-marine carbonates of the northwestern margin of the Siberian Platform is reported. The interval was analysed at the Kulyumbe section, which is exposed along the Kulyumbe River: an eastern tributary of the Enisej River. It comprises the upper Ust'-Brus, Labaz, Orakta, Kulyumbe, Ujgur, and lower Iltyk formations and includes the Steptoean positive carbon isotopic excursion (SPICE) studied here in detail from upper Cambrian carbonates of the Siberian Platform for the first time. The peak of the excursion, showing d13C positive values as high as +4.6? and least-altered 87Sr/86Sr ratios of 0.70909, is reported herein from the Yurakhian Horizon of the Kulyumbe Formation. The stratigraphic position of the SPICE excursion does not support traditional correlation of the boundary between the Orakta and Labaz formations at Kulyumbe River with its supposedly equivalent level in Australia, Laurentia, South China, and Kazakhstan, where the Glyptagnostus stolidotus and G. reticulatus biozones are known to immediately precede the SPICE excursion and span the Middle-Upper Cambrian boundary. The Cambrian-Ordovician boundary is probably situated in the middle Nyajan Horizon of the Iltyk Formation, in which carbon isotope values show a local maximum below a decrease in the upper part of the Nyajan Horizon, attributed herein to the Tremadocian. A refined magnetic polarity sequence shows that the geomagnetic reversal frequency was very high during the Middle Cambrian at 5-10 reversals per Ma, assuming a total duration of ~10 Ma and up to 100 magnetic intervals in the Middle Cambrian. By contrast, the sequence attributed herein to the Upper Cambrian on chemostratigraphic grounds contains only 10-11 magnetic intervals. Preprint in Open Access hdl:10013/epic.30209.d001
Resumo:
Understanding the nature of the earliest complex fossils has presented many challenges over the past century since Billings first described Ediacaran fossils from Newfoundland in 1872. Previous studies have documented abundant Ediacaran fossils in the Bonavista Peninsula of Newfoundland. This thesis focuses on the H14 surface north of Catalina, which contains a nearly monospecific assemblage that includes hundreds of specimens of the rangeomorph, Fractofusus andersoni. Three factors need to be considered when trying to interpret these organisms. The first of these three factors is structural deformation. The area has undergone deformation during the formation of the Appalachian orogenic belt. This has distorted both fossil shape and orientation, requiring retrodeformation to restore the shapes and relationships of fossils to their original form. Two additional taphonomic factors influencing fossil visibility are: partly or completely ash covered fossils and the removal of fossil impressions from the bedding plane by modern weathering. These processes hinder acceptance of some previously published interpretations.
Resumo:
The roasting of gold-bearing arsenopyrite at Giant mine (Northwest Territories) between 1949 and 1999 released approximately 20,000 tonnes of toxic arsenic-bearing aerosols in the local aerial environment. Detailed examination of lake sediments, sediment porewaters, surface waters and lake hydrology sampled from three lakes of differing limnological characteristics was conducted in summer and winter conditions. Samples were analyzed for solid and dissolved elemental concentrations, speciation and mineralogy. The three lakes are located less than 5km from the mine roaster, and downwind, based on predominant wind direction. The objective of the study was to assess the controls on the mobility and fate of arsenic in these roaster-impacted subarctic lacustrine environments. Results show that the occurrence of arsenic trioxide in lake sediments coincides with the regional onset of industrial activities. The bulk of arsenic in sediments is contained in the form of secondary sulphide precipitates, with iron oxides hosting a minimal amount of arsenic near the surface-water interface. The presence of geogenic arsenic is likely contained as dilute impurities in common rock-forming minerals, and is not believed to be a significant source of arsenic to sediments, porewaters or lake waters. Furthermore, the well correlated depth-profiles of arsenic, antimony and gold in sediments may help reveal roaster impact. The soluble arsenic trioxide particles contained in sediments act as the primary source of arsenic into porewaters. Dissolved arsenic in reducing porewaters both precipitate as secondary sulphides in situ, and diffuse upwards into the overlying lake waters. Arsenic diffusion out of porewaters, combined with watercourse-driven residence time, are estimated to be the predominant mechanisms controlling arsenic concentrations in overlying lake waters. The sequestration of arsenic from porewaters as sulphide precipitates, in the study lakes, is not an effective process in keeping lake-water arsenic concentrations below guidelines for the protection of the freshwater environment and drinking water. Seasonal impacts on lake geochemistry derive from ice covering lake waters, cutting them off from of atmospheric oxygen, along with the exclusion of solutes from the ice. Such effects are limited in deep lakes but are can be an important factor controlling arsenic precipitation and mobility in ponds.
Resumo:
The Los Negritos porphyry copper deposit is located ~ 4 km to the northeast of Carmen de Andacollo Mine in the Chilean Cretaceous metallogenic belt. The mineralization is hosted in andesite of the Quebrada Marquesa Formation and a series of at least four early to intramineral porphyry intrusive rock types: plagioclase quartz biotite porphyry (P1b and P1a dated at 109.60± 0.75 Ma and 107.22± 0.40 Ma); plagioclase biotite porphyry (P2: 106.30 ± 0.47 Ma); and quartz plagioclase biotite porphyry (P3: 106.19 ± 0.42 Ma). These units are cut by late‐ to post‐mineral plagioclase‐hornblende porphyritic rocks (P4b: 106.20 ± 0.69 Ma and P4a: 106.50 ± 0.68 Ma). The earliest intrusive units (P1) were affected by an initial stage of K‐feldspar‐biotite alteration, with chalcopyrite, molybdenite (date at 108.5 ± 0.5 Ma) and gold (up to 0.11 ppm), and the surrounding volcanic host rock was overprinted by chlorite‐epidote dominated (propylitic) alteration. Subsequent to the P2 and P3 intrusion, these rocks were affected by albite and then a second stage of potassic alteration. The Ti and Ba contents in hydrothermal biotite are notably lower (typically Ti = 0.100‐0.144 a.p.f.u. and Ba = 0.001‐0.005 a.p.f.u) than in magmatic ones (generally Ti = 0.186‐0.222 a.p.f.u. and Ba = 0.014‐0.023 a.p.f.u.), and constitute an excellent discriminant of the nature of biotite. These early stages of alteration were overprinted by copper‐molybdenum bearing chlorite‐sericite alteration at 106.60 ± 0.5 Ma (Re‐Os age in molybdenite) and by quartz‐sericite‐pyrite veins (phyllic), respectively in the southwest and northeast areas. The average temperature associated with these two alteration facies is estimated around 305 °C. Weak albite‐calcite alteration, spatially associated with sulfosalts and distributed along the margins of P3, overprinted the phyllic facies. The intrusive rock units at the Los Negritos and Carmen de Andacollo deposits are geochemically classified as diorite to granodiorite with a calc‐alkaline magmatic affinity, and formed in a volcanic arc setting from partial melting of a metasomatized mantle wedge. They are interpreted to be cogenetic, and related to a common long‐lived magma chamber that emplaced during a period of tectonic inversion known as the Subhercynian, Peruvian or Pacific event.
Resumo:
Within Canada there are more than 2.5 million bundles of spent nuclear fuel with another approximately 2 million bundles to be generated in the future. Canada, and every country around the world that has taken a decision on management of spent nuclear fuel, has decided on long-term containment and isolation of the fuel within a deep geological repository. At depth, a deep geological repository consists of a network of placement rooms where the bundles will be located within a multi-layered system that incorporates engineered and natural barriers. The barriers will be placed in a complex thermal-hydraulic-mechanical-chemical-biological (THMCB) environment. A large database of material properties for all components in the repository are required to construct representative models. Within the repository, the sealing materials will experience elevated temperatures due to the thermal gradient produced by radioactive decay heat from the waste inside the container. Furthermore, high porewater pressure due to the depth of repository along with possibility of elevated salinity of groundwater would cause the bentonite-based materials to be under transient hydraulic conditions. Therefore it is crucial to characterize the sealing materials over a wide range of thermal-hydraulic conditions. A comprehensive experimental program has been conducted to measure properties (mainly focused on thermal properties) of all sealing materials involved in Mark II concept at plausible thermal-hydraulic conditions. The thermal response of Canada’s concept for a deep geological repository has been modelled using experimentally measured thermal properties. Plausible scenarios are defined and the effects of these scenarios are examined on the container surface temperature as well as the surrounding geosphere to assess whether they meet design criteria for the cases studied. The thermal response shows that if all the materials even being at dried condition, repository still performs acceptably as long as sealing materials remain in contact.