956 resultados para Geographical computer applications
Resumo:
In the present research, we studied wines from three different south Brazilian winemaking regions with the purpose of differentiating them by geographical origin of the grapes. Brazil`s wide territory and climate diversity allow grape cultivation and winemaking in many regions of different and unique characteristics. The wine grape cultivation for winemaking concentrates in the South Region, mainly in the Serra GaA(0)cha, the mountain area of the state of Rio Grande do Sul, which is responsible for 90% of the domestic wine production. However, in recent years, two new production regions have developed: the Campanha, the plains to the south and the Serra do Sudeste, the hills to the southeast of the state. Analysis of isotopic ratios of (18)O/(16)O of wine water, (13)C/(12)C of ethanol, and of minerals were used to characterize wines from different regions. The isotope analysis of delta(18)O of wine water and minerals Mg and Rb were the most efficient to differentiate the regions. By using isotope and mineral analysis, and discrimination analysis, it was possible to classify the wines from south Brazil.
Resumo:
Nitrogen is the nutrient that is most absorbed by the corn crop, with the most complex management, and has the highest share on the cost of corn production. The objective of this work was to evaluate the economic viability of different rates and split-applications of nitrogen fertilization, as such as urea, in the corn crop in a eutrophic Red Latosol (Oxisol). The study was carried out in the Experimental Station of the Regional Pole of the Sao Paulo Northwest Agribusiness Development (APTA), in Votuporanga, State of Sao Paulo, Brazil. The experimental design was randomized complete blocks with nine treatments and four replications, consisting of five N rates: 0, 55, 95, 135 and 175 kg ha(-1), 15 kg ha-l applied in the seeding and the remainder in top dressing: 40 and 80 kg ha(-1) N at forty days after seeding (DAS), or 1/2 + 1/2 at 20 and 40 DAS; 120 kg ha-1 N split in 1/2 + 1/2 or 1/3 + 1/3 + 1/3 at 20, 40 or 60 DAS; 160 kg ha(-1) N split in 1/4 + 3/8 + 3/8 or 114 + 1/4 + 1/4 + 1/4 at 20, 40, 60 and 80 DAS. The application of 135 kg ha-l of N split in three times provided the best benefit/cost ratio. The non-application of N provided the lowest economic return, proving to be unviable.
Resumo:
A long-term field experiment was carried out in the experiment farm of the Sao Paulo State University, Brazil, to evaluate the phytoavailability of Zn, Cd and Pb in a Typic Eutrorthox soil treated with sewage sludge for nine consecutive years, using the sequential extraction and organic matter fractionation methods. During 2005-2006, maize (Zea mays L.) was used as test plants and the experimental design was in randomized complete blocks with four treatments and five replicates. The treatments consisted of four sewage sludge rates (in a dry basis): 0.0 (control, with mineral fertilization), 45.0, 90.0 and 127.5 t ha(-1), annually for nine years. Before maize sowing, the sewage sludge was manually applied to the soil and incorporated at 10 cm depth. Soil samples (0-20 cm layer) for Zn, Cd and Pb analysis were collected 60 days after sowing. The successive applications of sewage sludge to the soil did not affect heavy metal (Cd and Pb) fractions in the soil, with exception of Zn fractions. The Zn, Cd and Pb distributions in the soil were strongly associated with humin and residual fractions, which are characterized by stable chemical bonds. Zinc, Cd and Pb in the soil showed low phytoavailability after nine-year successive applications of sewage sludge to the soil.
Resumo:
Today several different unsupervised classification algorithms are commonly used to cluster similar patterns in a data set based only on its statistical properties. Specially in image data applications, self-organizing methods for unsupervised classification have been successfully applied for clustering pixels or group of pixels in order to perform segmentation tasks. The first important contribution of this paper refers to the development of a self-organizing method for data classification, named Enhanced Independent Component Analysis Mixture Model (EICAMM), which was built by proposing some modifications in the Independent Component Analysis Mixture Model (ICAMM). Such improvements were proposed by considering some of the model limitations as well as by analyzing how it should be improved in order to become more efficient. Moreover, a pre-processing methodology was also proposed, which is based on combining the Sparse Code Shrinkage (SCS) for image denoising and the Sobel edge detector. In the experiments of this work, the EICAMM and other self-organizing models were applied for segmenting images in their original and pre-processed versions. A comparative analysis showed satisfactory and competitive image segmentation results obtained by the proposals presented herein. (C) 2008 Published by Elsevier B.V.
Resumo:
A model where agents show discrete behavior regarding their actions, but have continuous opinions that are updated by interacting with other agents is presented. This new updating rule is applied to both the voter and Sznajd models for interaction between neighbors, and its consequences are discussed. The appearance of extremists is naturally observed and it seems to be a characteristic of this model.
Resumo:
Introduction: Internet users are increasingly using the worldwide web to search for information relating to their health. This situation makes it necessary to create specialized tools capable of supporting users in their searches. Objective: To apply and compare strategies that were developed to investigate the use of the Portuguese version of Medical Subject Headings (MeSH) for constructing an automated classifier for Brazilian Portuguese-language web-based content within or outside of the field of healthcare, focusing on the lay public. Methods: 3658 Brazilian web pages were used to train the classifier and 606 Brazilian web pages were used to validate it. The strategies proposed were constructed using content-based vector methods for text classification, such that Naive Bayes was used for the task of classifying vector patterns with characteristics obtained through the proposed strategies. Results: A strategy named InDeCS was developed specifically to adapt MeSH for the problem that was put forward. This approach achieved better accuracy for this pattern classification task (0.94 sensitivity, specificity and area under the ROC curve). Conclusions: Because of the significant results achieved by InDeCS, this tool has been successfully applied to the Brazilian healthcare search portal known as Busca Saude. Furthermore, it could be shown that MeSH presents important results when used for the task of classifying web-based content focusing on the lay public. It was also possible to show from this study that MeSH was able to map out mutable non-deterministic characteristics of the web. (c) 2010 Elsevier Inc. All rights reserved.
Resumo:
This paper presents a framework to build medical training applications by using virtual reality and a tool that helps the class instantiation of this framework. The main purpose is to make easier the building of virtual reality applications in the medical training area, considering systems to simulate biopsy exams and make available deformation, collision detection, and stereoscopy functionalities. The instantiation of the classes allows quick implementation of the tools for such a purpose, thus reducing errors and offering low cost due to the use of open source tools. Using the instantiation tool, the process of building applications is fast and easy. Therefore, computer programmers can obtain an initial application and adapt it to their needs. This tool allows the user to include, delete, and edit parameters in the functionalities chosen as well as storing these parameters for future use. In order to verify the efficiency of the framework, some case studies are presented.
Resumo:
A rapid method for classification of mineral waters is proposed. The discrimination power was evaluated by a novel combination of chemometric data analysis and qualitative multi-elemental fingerprints of mineral water samples acquired from different regions of the Brazilian territory. The classification of mineral waters was assessed using only the wavelength emission intensities obtained by inductively coupled plasma optical emission spectrometry (ICP OES), monitoring different lines of Al, B, Ba, Ca, Cl, Cu, Co, Cr, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Sb, Si, Sr, Ti, V, and Zn, and Be, Dy, Gd, In, La, Sc and Y as internal standards. Data acquisition was done under robust (RC) and non-robust (NRC) conditions. Also, the combination of signal intensities of two or more emission lines for each element were evaluated instead of the individual lines. The performance of two classification-k-nearest neighbor (kNN) and soft independent modeling of class analogy (SIMCA)-and preprocessing algorithms, autoscaling and Pareto scaling, were evaluated for the ability to differentiate between the various samples in each approach tested (combination of robust or non-robust conditions with use of individual lines or sum of the intensities of emission lines). It was shown that qualitative ICP OES fingerprinting in combination with multivariate analysis is a promising analytical tool that has potential to become a recognized procedure for rapid authenticity and adulteration testing of mineral water samples or other material whose physicochemical properties (or origin) are directly related to mineral content.
Resumo:
Diabetes mellitus (DM) is a disease that affects a large number of people, and the number of problems associated with the disease has been increasing in the past few decades. These problems include cardiovascular disorders, blindness and the eventual need to amputate limbs. Therefore, the quality of life for people living with DM is less than it is for healthy people. In several cases, metabolic syndrome (MS), which can be considered a disturbance of the lipid metabolism, is associated with DM. In this work, two drugs used to treat DM, pioglitazone and rosiglitazone, were studied using theoretical methods, and their molecular properties were related to the biological activity of these drugs. From the results, it was possible to correlate the properties of each substance-particularly electronic properties-with the biological interactions that are linked to their pharmacological effects. These results suggest that there are future prospects for designing or developing new drugs based on the correlation between theoretical and experimental properties.
Resumo:
A study on the possible sites of oxidation and epoxidation of nortriptyline was performed using electrochemical and quantum chemical methods; these sites are involved in the biological responses (for example, hepatotoxicity) of nortriptyline and other similar antidepressants. Quantum chemical studies and electrochemical experiments demonstrated that the oxidation and epoxidation sites are located on the apolar region of nortriptyline, which will useful for understanding the molecule`s activity. Also, for the determination of the compound in biological fluids or in pharmaceutical formulations, we propose a useful analytical methodology using a graphite-polyurethane composite electrode, which exhibited the best performance when compared with boron-doped diamond or glassy carbon surfaces.
Resumo:
Brazilian science has increased fast during the last decades. An example is the increasing in the country`s share in the world`s scientific publication within the main international databases. But what is the actual weight of international publications to the whole Brazilian productivity? In order to respond this question, we have elaborated a new indicator, the International Publication Ratio (IPR). The data source was Lattes Database, a database organized by one of the main Brazilian S&T funding agency, which encompasses publication data from 1997 to 2004 of about 51,000 Brazilian researchers. Influences of distinct parameters, such as sectors, fields, career age and gender, are analyzed. We hope the data presented may help S&T managers and other S&T interests to better understand the complexity under the concept scientific productivity, especially in peripheral countries in science, such as Brazil.
Resumo:
In recent years, magnetic nanoparticles have been studied due to their potential applications as magnetic carriers in biomedical area. These materials have been increasingly exploited as efficient delivery vectors, leading to opportunities of use as magnetic resonance imaging (MRI) agents, mediators of hyperthermia cancer treatment and in targeted therapies. Much attention has been also focused on ""smart"" polymers, which are able to respond to environmental changes, such as changes in the temperature and pH. In this context, this article reviews the state-of-the art in stimuli-responsive magnetic systems for biomedical applications. The paper describes different types of stimuli-sensitive systems, mainly temperature- and pH sensitive polymers, the combination of this characteristic with magnetic properties and, finally, it gives an account of their preparation methods. The article also discusses the main in vivo biomedical applications of such materials. A survey of the recent literature on various stimuli-responsive magnetic gels in biomedical applications is also included. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The objective of this study is to graft the Surface of carbon black, by chemically introducing polymeric chains (Nafion (R) like) with proton-conducting properties. This procedure aims for a better interaction of the proton-conducting phase with the metallic catalyst particles, as well as hinders posterior support particle agglomeration. Also loss of active surface call be prevented. The proton conduction between the active electrocatalyst site and the Nafion (R) ionomer membrane should be enhanced, thus diminishing the ohmic drop ill the polymer electrolyte membrane fuel cell (PEMFC). PtRu nanoparticles were supported on different carbon materials by the impregnation method and direct reduction with ethylene glycol and characterized using amongst others FTIR, XRD and TEM. The screen printing technique was used to produce membrane electrode assemblies (MEA) for single cell tests in H(2)/air(PEMFC) and methanol operation (DMFC). In the PEMFC experiments, PtRu supported on grafted carbon shows 550 mW cm(-2) gmetal(-1) power density, which represents at least 78% improvement in performance, compared to the power density of commercial PtRu/C ETEK. The DMFC results of the grafted electrocatalyst achieve around 100% improvement. The polarization Curves results clearly show that the main Cause of the observed effect is the reduction in ohmic drop, caused by the grafted polymer. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Support for interoperability and interchangeability of software components which are part of a fieldbus automation system relies on the definition of open architectures, most of them involving proprietary technologies. Concurrently, standard, open and non-proprietary technologies, such as XML, SOAP, Web Services and the like, have greatly evolved and been diffused in the computing area. This article presents a FOUNDATION fieldbus (TM) device description technology named Open-EDD, based on XML and other related technologies (XLST, DOM using Xerces implementation, OO, XMIL Schema), proposing an open and nonproprietary alternative to the EDD (Electronic Device Description). This initial proposal includes defining Open-EDDML as the programming language of the technology in the FOUNDATION fieldbus (TM) protocol, implementing a compiler and a parser, and finally, integrating and testing the new technology using field devices and a commercial fieldbus configurator. This study attests that this new technology is feasible and can be applied to other configurators or HMI applications used in fieldbus automation systems. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper proposes a novel computer vision approach that processes video sequences of people walking and then recognises those people by their gait. Human motion carries different information that can be analysed in various ways. The skeleton carries motion information about human joints, and the silhouette carries information about boundary motion of the human body. Moreover, binary and gray-level images contain different information about human movements. This work proposes to recover these different kinds of information to interpret the global motion of the human body based on four different segmented image models, using a fusion model to improve classification. Our proposed method considers the set of the segmented frames of each individual as a distinct class and each frame as an object of this class. The methodology applies background extraction using the Gaussian Mixture Model (GMM), a scale reduction based on the Wavelet Transform (WT) and feature extraction by Principal Component Analysis (PCA). We propose four new schemas for motion information capture: the Silhouette-Gray-Wavelet model (SGW) captures motion based on grey level variations; the Silhouette-Binary-Wavelet model (SBW) captures motion based on binary information; the Silhouette-Edge-Binary model (SEW) captures motion based on edge information and the Silhouette Skeleton Wavelet model (SSW) captures motion based on skeleton movement. The classification rates obtained separately from these four different models are then merged using a new proposed fusion technique. The results suggest excellent performance in terms of recognising people by their gait.