916 resultados para Genome-specific Sequence
Resumo:
With current gene-transfer techniques in fish, insertion of DNA into the genome occurs randomly and in many instances at multiple sites. Associated position effects, copy number differences, and multiple gene interactions make gene expression experiments difficult to interpret and fish phenotype less predictable. To meet different fish engineering needs, we describe here a gene targeting model in zebrafish. At first, four target zebrafish lines, each harboring a single genomic lox71 target site, were generated by zebrafish transgenesis. The zygotes of transgenic zebrafish lines were coinjected with capped Cre mRNA and a knockin vector pZklox66RFP. Site-specific integration event happened from one target zebrafish line. In this line two integrant zebrafish were obtained from more than 80,000 targeted embryos (integrating efficiency about 10(-4) to 10(-5)) and confirmed to have a sole copy of the integrating DNA at the target genome site. Genomic polymerase chain reaction analysis and DNA sequencing verified the correct gene target events where lox71 and lox66 have accurately recombined into double mutant lox72 and wild-type loxP. Each integrant zebrafish chosen for analysis harbored the transgene rfp at the designated egfp concatenates. Although the Cre-mediated recombination is site specific, it is dependent on a randomly placed target site. That is, a genomic target cannot be preselected for integration based solely on its sequence. Conclusively, an rfp reporter gene was successfully inserted into the egfp target locus of zebrafish genome by Cre-lox-mediated recombination. This site-directed knockin system using the lox71/lox66 combination should be a promising gene-targeting platform serving various purposes in fish genetic engineering.
Resumo:
The complete mitochondrial genome sequence of the Chinese hook snout carp, Opsariichthys bidens, was newly determined using the long and accurate polymerase chain reaction method. The 16,611-nucleotide mitogenome contains 13 protein-coding genes, two rRNA genes (12S, 16S) 22 tRNA genes, and a noncoding control region. We use these data and homologous sequence data from multiple other ostariophysan fishes in a phylogenetic evaluation to test hypothesis pertaining to codon usage pattern of O. bidens mitochondrial protein genes as well as to re-examine the ostariophysan phylogeny. The mitochondrial genome of O. bidens reveals an alternative pattern of vertebrate mitochondrial evolution. For the mitochondrial protein genes of O. bidens, the most frequently used codon generally ends with either A or C, with C preferred over A for most fourfold degenerate codon families; the relative synonymous codon usage of G-ending codons is greatly elevated in all categories. The codon usage pattern of O. bidens mitochondrial protein genes is remarkably different from the general pattern found previously in the relatively closely 9 related zebrafish and most other vertebrate mitochondria. Nucleotide bias at third codon positions is the main cause of codon bias in the mitochondrial protein genes of O. bidens, as it is biased particularly in favor of C over A. Bayesian analysis of 12 concatenated mitochondrial protein sequences for O. bidens and 46 other teleostean taxa supports the monophyly of Cypriniformes and Otophysi and results in a robust estimate of the otophysan phylogeny. (C) 2007 Published by Elsevier B.V.
Resumo:
The unusual allotetraploid form with unequal contribution of chromosome sets was discovered from the gynogenetic offspring of Carassius auratus gibelio stimulated by red common carp sperm. In this study, genomic in situ hybridization (GISH) and fluorescent in situ hybridization (FISH) with 45S rDNA probe are used. The GISH results lead to the identification of species-specific chromosomes, which permits to demonstrate the origin and genome organization in the allotetraploid form. Moreover, chromosome localization of 45S rDNA and co-localizations of 45S rDNA and Cyprinus carpio genomic DNA further confirm that one extra 45S rDNA positive chromosome in the allotetraploid form originates from the paternal haploid genome of C carpio, and other 5 45S rDNA-containing chromosomes are from the maternal genome of Carassius auratus gibelio. And, the correlation between 45 rDNA and the nucleolar organizer regions (NORs) is confirmed by silver nitrate staining. The data provide direct experiment evidence that the allotetraploid actually contains three chromosome sets of Carassius auratus gibelio and one chromosome set of C carpio, and will be a useful genetic material for both basic research and breeding practice. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Previous studies have demonstrated that germinal vesicle of amphibian oocyte contains small nuclear ribonucleoprotein polypeptide C (SNRPC). In this study, a putative member of SNRPC was identified from Carassius auratus gibelio oocyte cDNA library. Its full-length cDNA has an open reading frame of 201 nt for encoding a peptide of 66 an, a short 5'-UTR of 19 nt and a long 3'-UTR of 347 nt including a polyadenylation signal and poly- (A) tail, and the deduced amino acid sequence has 47% identity with the C-terminal of the zebrafish small nuclear ribonucleoprotein polypeptide C. Western blot analysis revealed its oocyte-specific expression. Immunofluorescence localization indicated that its gene product localized to numerous nucleoli within the oocytes and showed dynamic changes with the nucleoli during oocyte maturation. RT-PCR and Western blot analysis further revealed its constant presence in the oocytes and in the embryos until hatching. The data suggested that the newly identified CagOSNRPC might be a nucleolar protein. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
The Sox gene family is found in a broad range of animal taxa and encodes important gene regulatory proteins involved in a variety of developmental processes. We have obtained clones representing the HMG boxes of twelve Sox genes from grass carp (Ctenopharyngodon idella), one of the four major domestic carps in China. The cloned Sox genes belong to group B1, B2 and C. Our analyses show that whereas the human genome contains a single copy of Sox4, Sox11 and Sox14, each of these genes has two co-orthologs in grass carp, and the duplication of Sox4 and Sox11 occurred before the divergence of grass carp and zebrafish, which support the "fish-specific whole-genome duplication" theory. An estimation for the origin of grass carp based on the molecular clock using Sox1, Sox3 and Sox11 genes as markers indicates that grass carp (subfamily Leuciscinae) and zebrafish (subfamily Danioninae) diverged approximately 60 million years ago. The potential uses of Sox genes as markers in revealing the evolutionary history of grass carp are discussed.
Resumo:
Lunatic fringe (Lfng), one modulator of Notch signaling, plays an essential part in demarcation of tissues boundaries during animal early development, especially somitogenesis. To characterize the promoter of zebrafish 1fng and generate somite-specific transgenic zebrafish, we isolated the upstream regulatory region of zebrafish 1fng by blast search at the Ensembl genome database (http://www. ensembl.org) and analyzed the promoter activity using green fluorescent protein (GFP) as a reporter. Promoter activity assay in zebrafish shows that the 0.2-kb fragment containing GC-box, CAAT-box, and TATA-box can direct tissue-specific GFP expression, while the 0.4-kb and 1.2-kb fragments with further upstream sequence included drive GFP expression more efficiently. We produced 1fngEGFP-transgenic founders showing somite-specific expression of GFP and consequently generated a hemizygous 1fngEGFP-transgenic line. The eggs from 1fngEGFP-transgenic female zebrafish show strong GFP expression, which is consistent to the reverse-transcription polymerase chain reaction PCR (RT-PCR) detection of 1fng transcripts in the fertilized eggs. This reveals that zebrafish 1fng is a maternal factor existing in matured eggs, suggesting that fish somitogcnesis may be influenced by maternal factors.
Resumo:
The complete sequence of the 16,539 nucleotide mitochondrial genome from the single species of the catfish family Cranoglanididae, the helmet catfish Cranoglanis bouderius, was determined using the long and accurate polymerase chain reaction (LA PCR) method. The nucleotide sequences of C. bouderius mitochondrial DNA have been compared with those of three other catfish species in the same order. The contents of the C. bouderius mitochondrial genome are 13 protein-coding genes, two ribosomal RNA and 22 transfer RNA genes, and a non-coding control region, the gene order of which is identical to that observed in most other vertebrates. Phylogenetic analyses for 13 otophysan fishes were performed using Bayesian method based on the concatenated mtDNA protein-coding gene sequence and the individual protein-coding gene sequence data set. The competing otophysan topologies were then tested by using the approximately unbiased test, the Kishino-Hasegawa test, and the Shimodaira-Hasegawa test. The results show that the grouping ((((Characifonnes, Gymnotiformes), Siluriformes), Cyprinifionnes), outgroup) is the most likely but there is no significant difference between this one and the other alternative hypotheses. In addition, the phylogenetic placement of the family Cranoglanididae among siluriform families was also discussed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Antimicrobial peptides (AMPs) are important components of the host innate immune response against microbial invasion. In addition to the previously known four classes of antimicrobial peptides, a fifth class of antimicrobial peptides has been recently identified to include NK-lysins that have a globular three-dimensional structure and are larger with 74-78 amino acid residues. NK-lysin has been shown to harbor antimicrobial activities against a wide spectrum of microorganisms including bacteria, fungi, protozoa, and parasites. To date, NK-lysin genes have been reported from only a limited number of organisms. We previously identified a NK-lysin cDNA in channel catfish. Here we report the identification of two noveltypes of NK-lysin transcripts in channel catfish. Altogether, three distinct NK-lysin transcripts exist in channel catfish. In this work, their encoding genes were identified, sequenced, and characterized. We provide strong evidence that the catfish NK-lysin gene is tripled in the same genomic neighborhood. All three catfish NK-lysin genes are present in the same genomic region and are tightly linked on the same chromosome, as the same BAC clones harbor all three copies of the NK-lysin genes. All three NK-lysin genes are expressed, but exhibit distinct expression profiles in various tissues. In spite of the existence of a single copy of NK-lysin gene in the human genome, and only a single hit from the pufferfish,genome, there are two tripled clusters of NK-lysin genes on chromosome 17 of zebrafish in addition to one more copy on its chromosome 5. The similarity in the genomic arrangement of the tripled NK-lysin genes in channel catfish and zebrafish suggest similar evolution of NK-lysin genes. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A rapid, sensitive and highly specific detection method for Aquareovirus based on reverse-transcription polymerase chain reaction (RT-PCR) was developed. Based on multiple sequence alignment of the cloned sequences of a local isolates, the Threadfin reovirus (TFV) and Guppy reovirus (GPV) with Grass carp reovirus (GCRV), a pair of degenerate primers was selected carefully and synthesized. Using this primer combination, only one specific product, approximately 450 bp in length was obtained when RT-PCR was carried out using the genomic double-stranded RNA (dsRNA) of TFV, GPV and GCRV. Similar results were also obtained when Chum salmon reovirus (CSRV) and Striped bass reovirus (SBRV) dsRNA were used as templates. No products were observed when nucleic acids other than the dsRNA of the aquareoviruses described above were used as RT-PCR templates. This technique could detect not only TFV but also GPV and GCRV in low titer virus-infected cell cultured cells. Furthermore, this method has also been shown to be able to diagnose GPV-infected guppy (Poecilia reticulata) that exhibit clinical symptoms as well as GPV-carrier guppy. Collectively, these results showed that the RT-PCR amplification method using specific degenerate primers described below is very useful for rapid and accurate detection of a variety of aquareovirus strains isolated from different host species and origin. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The complete nucleotide sequence of the genome segment S8 of grass carp hemorrhage virus (GCHV) was determined from cDNA corresponding to the viral genomic RNA. It is 1,287 nucleotides in length and contains a large open reading frame that could encode a protein of 409 amino acids with a predicted molecular mass of 44 kD. The S8 was expressed using the pET fusion protein vector and detected by Western blotting analysis using the chicken egg IgY against intact GCHV particles, indicating that S8 encodes a virion protein. Amino acid sequence comparisons revealed that the protein encoded by S8 is closely related to protein alpha2 of mammalian reovirus, suggesting that the deduced protein of S8 is an inner capsid protein. Copyright (C) 2001 S. Karger AG, Basel.
Resumo:
Identifcation of the earliest forebrain-specific markers should facilitate the elucidation of molecular events underlying vertebrate forebrain determination and specification. Here we report the sequence and characterization of fez (forebrain embryonic zinc finger), a gene that is specifically expressed in the embryonic forebrain of zebrafish. Fez encodes a putative nuclear zinc finger protein that is highly conserved in Drosophila, zebrafish, Xenopus, mouse, and human. In zebrafish, the expression of fez becomes detectable at the anterior edge of the presumptive neuroectoderm by 70% epiboly. During the segmentation period, its expression is completely restricted to the rostral region of the prospective forebrain. At approximately 24 h postfertilization, fez expression is mostly confined to the telencephalon and the anterior-ventral region of the diencephalon. Although fez expression is present in one-eyed pinhead (oep) and cyclops (cyc) zebrfish mutants, the pattern is altered. Forced expression of fez induces ectopic expression of dlx2 and dlx6, two genes involved in brain development. Knockdown of fez function using a morpholino-based antisense oligo inhibited dlx2 expression in the ventral forebrain. Our studies indicate that fez is one of the earliest markers specific for the anterior neuroectoderm and it may play a role in forebrain development by regulating Dlx gene expression. (C) 2001 Academic Press.
Resumo:
Formyl peptide receptors (FPRs) were observed to expand in rodents and were recently suggested as candidate vomeronasal chemosensory receptors. Since vomeronasal chemosensory receptors usually underwent positive selection and evolved concordantly with the vomeronasal organ (VNO) morphology, we surveyed FPRs in primates in which VNO morphology is greatly diverse and thus it would provide us a clearer view of VNO-FPRs evolution. By screening available primate genome sequences, we obtained the FPR repertoires in representative primate species. As a result, we did not find FPR family size expansion in primates. Further analyses showed no evolutionary force variance between primates with or without VNO structure, which indicated that there was no functional divergence among primates FPRs. Our results suggest that primates lack the VNO-specific FPRs and the FPR expansion is not a common phenomenon in mammals outside rodent lineage, regardless of VNO complexity.
Resumo:
禾谷孢囊线虫(Heterodera avenae)是严重危害禾谷类作物的病原线虫之一,它广泛分布于澳大利亚、欧洲、北美、印度和中国等世界主要小麦产区,使作物严重减产,造成巨大的经济损失。目前最有效的防治措施之一是将外源抗性基因导入栽培小麦(Triticum aestivum L.),培育抗禾谷孢囊线虫的新品种。但迄今为止抗禾谷孢囊线虫基因克隆研究的相关报道却很少。 本实验根据此前从抗禾谷孢囊线虫材料E-10扩增得到的与来自节节麦(Aegilops tauschii)的抗禾谷孢囊线虫基因Cre3高度同源的序列Rccn4,设计出三条嵌套引物,采用SON-PCR(single oligonucleotide nested PCR)方法,从E-10基因组DNA中得到一个长为1264 bp的扩增产物(命名为Rccn-L),测序比对结果显示,这一序列将Rccn4的3’端延伸了1209 bp,与抗禾谷孢囊线虫Cre3基因核苷酸同源性为86﹪,核苷酸编码区长1026 bp,含一个不完整的开放阅读框,一个终止密码子,没有起始密码子和内含子结构,编码一个342个氨基酸残基的蛋白质。该蛋白质等电点为5.19,分子量为38112.6Da。从序列的第113位开始到第332位是NBS-LRR类抗病性基因LRR区,呈现XXLXXLXXL重复。LRR编码区内亮氨酸残基的含量达17﹪,与抗禾谷孢囊线虫Cre3基因LRR编码区的核苷酸和氨基酸同源性分别为89﹪和78﹪。本实验首次将SON-PCR成功地运用于植物基因克隆,为植物基因克隆提供了又一有效方法。 此外,还根据Cre3基因及其他的NBS-LRR类植物抗性基因的NBS和LRR区保守序列设计了两对特异性引物,从禾谷孢囊线虫抗性材料易变山羊草基因组DNA中扩增到两个相应的目标条带。测序分析结果表明,它们的长度分别为532bp和1175bp,构成了一个有32bp的共同序列的NBS-LRR编码区。其序列总长为1675bp(命名为RCCN),含有一个不完整的开放阅读框,没有起始密码子、终止密码子和内含子结构。其中编码序列为1673bp,可编码一个557个氨基酸的蛋白质,等电点(pI)为5.39,分子量为63537.5Da。与Cre3的核苷酸和氨基酸同源性分别为87.8﹪和77﹪。RCCN氨基酸序列中含有已知抗病基因NBS区域的几个保守模体:kinase2区的ILDD、kinase3的(ⅰ)ESKILVTTRSK,(ⅱ)KGSPLAARTVGG,(ⅲ)RRCFAYCS及EGF。RCCN NBS区与Cre3 NBS区的核苷酸和氨基酸的同源性分别为96.4﹪和94﹪。从氨基酸序列的274位到548位为LRR保守区,呈现不规则的aXXLXXLXXL(其中a代表I,V,L,F或M)重复,其中亮氨酸的含量为15.6﹪。该区域与Cre3的LRR区的核苷酸和氨基酸同源性分别为80.8﹪和74﹪。推测该序列可能为一个抗禾谷孢囊线虫的新基因。 本文对抗禾谷孢囊线虫基因的克隆研究,为进一步克隆基因全序列,探索其结构与功能,和研究该基因表达与调控提供了关键信息。同时也为通过基因工程途径将抗性基因向优良小麦品种高效、定向转移,最终培育出小麦抗禾谷孢囊线虫新品种奠定了基础。 Cereal cyst nematode (CCN) is a damaging pathogen of broad acre cereal crops in Australia, Europe, North America, India and China. It affects wheat, barley, oat and triticale and causes yield loss of up to 80%. At present, Transferring resistance genes against CCN into wheat cultivars and breeding varieties are considered one of the most effective methods for controlling the CCN. However, there are very limited reports concerning the cloning studies of resistance genes against the cereal cyst nematode. According to the sequence of Rccn4 which had high similarity to the nucleotide binding site (NBS) coding region of cereal cyst nematode resistance gene, Cre3, We designed three 3’ nested primers. Using single oligonucleotide nested PCR (SON-PCR) we successfully amplified one band, Rccn-L, of 1264bp from E-10 which is the wheat-Ae.variabilis translocation line containing the cereal cyst nematode resistance gene of Ae.variabilis. We found that this band of interesting is the 3’ flanking sequence of 1209bp in size of Rccn4. The coding region was 1026bp, which contained an incomplete open reading frame and a terminator codon, without initiation codon and intron, encoding a peptide of 342 amino acid residues, and shared 86﹪nucleotide sequence identity with Cre3. This peptide had a conserved LRR domain, containing the imperfect repeats,XXLXXLXXL, which contains 17﹪ leucine residues and shares, respectively, 89﹪ nucleotide sequence and 78﹪ amino acid sequence identity with the LRR sequence of Cre3 locus. This research firstly used SON-PCR in the research of plant genome successfully, which indicated that SON-PCR is another method of cloning plant gene. At the same time, According to the conversed motif of NBS and LRR region of cereal cyst nematode resistance gene Cre3 from wild wheat (Triticum tauschlii L.) and the known NBS-LRR group resistance genes, we designed two pairs of specific primers for NBS and LRR region respectively. One band of approximately 530bp was amplified using the specific primers for conversed NBS region and one band of approximately 1200bp was amplified with the specific primers for conversed LRR region. After sequencing, we found that these two sequences included 32bp common nucleotide sequence and have 1675 bp in total, which was registered as RCCN in the Genbank. RCCN contained a NBS-LRR domain and an incomplete open reading frame without initiation codon, terminator codon and inxon. Its exon encodes a peptide of 557 amino acid residues. The molecular weight of the protein from the amino acid was 63.537 KDa. The amino acid sequence of RCCN contained conserved motif: ILDD, ESKILVTTRSK, KGSPLAARTVGG, RRCFAYCS, EGF,LRR. RCCN shares 87.8﹪ nucleotide sequence and 77﹪ amino acid sequence identity with cereal cyst nematode gene Cre3. It might be a novel cereal cyst nematode resistance gene. These research results of cloning the resistance genes against cereal cyst nematode bring a great promise for transferring resistance genes into wheat cultivars and breeding new wheat varieties against cereal cyst nematode by gene engineering. And these results also lay the hard foundation for the expressing researches of these genes.
Resumo:
禾谷孢囊线虫严重影响禾谷类作物的产量,在小麦中由禾谷孢囊线虫引起的产量损失可达30-100%。尤其在澳大利亚、欧洲、印度和中东危害严重,目前禾谷孢囊线虫已成为危害我国作物的主要病源。控制禾谷孢囊线虫的方法主要有:作物轮作、杀线虫剂、寄主抗性等等,其中基因工程方法培育抗线虫小麦品种被认为是最经济有效的方法。分离抗禾谷类孢囊线虫基因对揭示抗性基因结构与功能及其表达调控具有重要意义。 尽管小麦是重要的粮食作物,在小麦中已发现的抗禾谷孢囊线虫的基因很少,而比其近缘属如节节麦、易变山羊草、偏凸山羊草中含有丰富的抗源。目前已鉴定出禾谷孢囊线虫抗性位点Cre,并发现了9个禾谷孢囊线虫抗性基因(Cre1,2, 3, 4, 5, 6, 7, 8, and R) ,其中只有Cre1和Cre8直接从普通小麦中获得。从节节麦中获得的Cre3基因能最有效的控制线虫数量,其次是Cre1和Cre8。这些基因的克隆对于了解禾谷孢囊线虫抗性机制及进一步的育种应用都是非常关键的。然而,目前为止仅有Cre3基因通过图位克隆的方法从节节麦中被分离得到。该基因已被克隆得到的多数线虫抗性基因一样均属于核苷酸结合位点区(NBS)-亮氨酸重复序列区(LRR)基因家族。目前,已有很多抗性基因被分离,这些已知的NBS-LRR类抗性基因的保守序列为应用PCR的方法克隆新的抗性基因提供了可能。 因此本课题的目的是采用保守区同源克隆、3′RACE 和5′RACE 等方法从抗禾谷孢囊线虫小麦-易变山羊草小片段易位系E10 中克隆小麦抗禾谷孢囊线虫基因全序列,进而通过半定量PCR 和荧光定量PCR 研究该基因的表达模式。同时通过mRNA 差别显示技术和任意引物PCR(RAP-PCR)技术分离克隆植物禾谷孢囊线虫抗性基因及其相关基因,为阐明植物抗病性分子机制以及改良作物抗病性和作物育种提供基础,为通过分子标记辅助育种和基因工程方法实现高效、定向转移抗病基因到优良小麦品种奠定了重要的理论和物质基础。主要研究结果: 1. 本实验根据此前从抗禾谷孢囊线虫材料E-10 扩增得到的与来自节节麦的抗禾谷孢囊线虫Cre3 基因及其他的NBS-LRR 类抗性基因的NBS 和LRR 保守区序列设计了两对特异性引物,从E10 中扩增到532bp 和1175bp 的两个目标条带,它们有一个32bp 的共同序列,连接构成总长为1675bp 的NBS-LRR 编码区(命名为RCCN)。根据RCCN设计引物,利用NBS-LRR区序列设计引物,通过5′RACE 和3′RACE 技术采用3′-Full RACE Core Set(TaKaRa)和5'-Full RACE Kit (TaKaRa)试剂盒,反转录后通过嵌套引物GSP1 和GSP2 分别进行两轮基因特异性扩增,分别将NBS_LRR 区向5′端和3′端延伸了1173bp 和449bp,并包含了起始密码子和终止密码子。根据拼接的得到的序列重新设计引物扩增进行全基因扩增的结果与上面获得的一致。拼接后得到全长2775 bp 的基因序列(记作CreZ, GenBank 号:EU327996)。CreZ 基因包括完整的开放阅读框,全长2775 bp,编码924个氨基酸。序列分析表明它与已知的禾谷孢囊线虫抗性基因Cre3的一致性很高,并且它与已经报到的NBS-LRR 类疾病抗性基因有着相同的保守结构域。推测CreZ基因可能是一个新的NBS-LRR 类禾谷孢囊线虫抗性基因,该基因的获得为通过基因工程途径培育抗禾谷孢囊线虫小麦新品种奠定了基础,并为抗禾谷孢囊线虫基因的调控表达研究提供了参考。 2. 通过半定量PCR和SYBR Green荧光定量PCR技术对CreZ基因的相对表达模式进行了研究。以α-tubulin 2作为参照,采用半定量PCR 分析CreZ 基因在不同接种时期1d, 5d, 10, 15d 的E-10的根和叶的的表达情况。在内参扩增一致的条件下,CreZ 在E-10的根部随着侵染时间的增加表达量有明显的增加,在没有侵染的E-10的根部其表达量没有明显变化,而在叶中没有检测表达,说明该基因只在抗性材料的根部表达。SYBR Green定量PCR分析接种前后E10根部基因CreZ基因的表达水平为检测CreZ基因的表达建立了一套灵敏、可靠的SYBRGreen I 荧光定量PCR 检测方法。接种禾谷孢囊线虫后E10根内CreZ基因的相对表达水平显著高于接种前。随接种时间的延长持续增加,最终CreZ基因的相对表达量达到未接种的对照植株的10.95倍。小麦禾谷孢囊线虫抗性基因CreZ的表达量与胁迫呈正相关,表明其与小麦的的禾谷孢囊线虫抗性密切相关,推测CreZ基因可能是一个新的禾谷孢囊线虫候选抗性基因。 3. 针对小麦基因组庞大、重复序列较多,禾谷孢囊线虫抗性基因及其相关基因的片断难以有效克隆的问题,通过mRNA 差别显示技术及RAP-PCR 技术分离克隆植物禾谷孢囊线虫抗性及其相关基因。试验最终得到154 条差异表达条带,将回收得到的差异条带的二次PCR 扩增产物经纯化后点到带正电的尼龙膜上,进行反向Northern 杂交筛选,最终筛选得到102 个阳性差异点。将其中81 个进行测序,并将序列提交到Genbank 中的dbEST 数据库,分别获得登录号(FE192210 -FE192265,FE193048- FE193074 )。序列比对分析发现,其中26 个序列与已知功能的基因序列同源;有28 条EST 序列在已有核酸数据库中未找到同源已知基因和EST,属新的ESTs 序列;另外27 个EST 序列与已知核酸数据库中的ESTs 具有一定相似性,但功能未知。其所得ESTs 序列补充了Genbank ESTs 数据库,为今后进一步开展抗禾谷类孢囊线虫基因研究工作打下了基础。结合本试验功能基因的相关信息,对小麦接种禾谷孢囊线虫后产生的抗性机制进行了探讨。接种禾谷孢囊线虫后植物在mRNA 水平上的应答是相当复杂的,同时植物的抗病机制是一个复杂的过程,涉及到多个代谢途径的相互作用。 The cereal cyst nematode (CCN), Heterodera avenae Woll, causes severe yieldreductions in cereal crops. The losses caused by CCN can be up to 30-100% in somewheat fields. At present, cereal cyst nematode has become the major disease sourcein China and it also damaged heavily in Australia, Europe, India and Middle East.The damage caused by CCN can be mitigated through several methods, includingcrop rotation, nematicide application, cultural practice, host resistance, and others.Of these methods, incorporating resistance genes into wheat cultivars and breedingresistant lines is considered to be the most cost-effective control measure forreducing nematode populations. Although wheat is an economically important crop around the world, far fewergenes resistant to CCN were found in wheat than were detected in its relatives, suchas Aegilops taucchi, Aegilops variabilis and Aegilops ventricosa. Cloning these genesis essential for understanding the mechanism of this resistance and for furtherapplication in breeding. Because of the huge genome and high repeat sequencescontent, the efficient methods to clone genes from cereal crops, are still lacking. A resistance locus, Cre, has been identified and 9 genes resistant to CCN (designatedCre1, 2, 3, 4, 5, 6, 7, 8, and R) have been described, in which Cre1 and Cre8 werederived directly from common wheat. The Cre3 locus, which was derived from Ae.tauschii, has the greatest impact on reducing the number of female cysts, followed byCre1 and Cre8. Cloning these genes is essential for understanding the mechanism ofthis resistance and for further application in breeding. However, to this point, only Cre3, a NBS-LRR disease resistance gene, has been obtained through mappingcloning in Ae. tauschii. The majority of nematode resistance genes cloned so far belong to a super familywhich contains highly conserved nucleotide-binding sites (NBS) and leucine-richrepeat (LRR) domains. To date, many NBS-LRR resistance genes have been isolated.The conserved sequences of these recognized NBS-LRR resistance genes provide thepossibility to isolate novel resistance genes using a PCR-based strategy. The aim of the present study was to clone the resistance gene of CCN fromWheat/Aegilops variabilis small fragment chromosome translocation line E10 whichis resistant to CCN and investigate the espression profiles of this gene withsemi-quantitative PCR and real-time PCR. Another purpose of this study is cloningthe relational resistance gene for CCN by mRNA differential display PCR andRAP-PCR. These works will offer a foundation for disease defence of crop andbreeding and directional transferring resistance gene into wheat with geneengineering. Primary results as following: 1.According to the conversed motif of NBS and LRR region of cereal cystnematode resistance gene Cre3 from wild wheat (Triticum tauschlii) and the knownNBS-LRR group resistance genes, we designed two pairs of specific primers for NBSand LRR region respectively. One band of approximately 530bp was amplified usingthe specific primers for conversed NBS region and one band of approximately 1175bpwas amplified with the specific primers for conversed LRR region. After sequencing,we found that these two sequences included 32bp common nucleotide having 1675bpin total, which was registered as RCCN in the Genbank. Based on the conservedregions of known resistance genes, a NBS-LRR type CCN resistance gene analog wasisolated from the CCN resistant line E-10 of the wheat near isogenic lines (NILs), by5′RACE and 3′ RACE.designated as CreZ (GenBank accession number: EU327996) .It contained a comlete ORF of 2775 bp and encoded 924 amino acids. Sequencecomparison indicated that it shared 92% nucleotide and 87% amino acid identitieswith those of the known CCN-resistance gene Cre3 and it had the same characteristic of the conserved motifs as other established NBS-LRR disease resistance genes. 2. Usingα-tubulin 2 as exoteric reference, semi-quantitative PCR and real-timePCR analysis were conducted. The expression profiling of CreZ indicated that it wasspecifically expressed in the roots of resistant plants and its relative expression levelincreased sharply when the plants were inoculated with cereal cyst nematodes. therelative expression level of the 15days-infected E10 is the 10.95 times as that ofuninfected E10,ultimately. It was inferred that the CreZ gene be a novel potentialresistance gene to CCN. 3.We cloned the relational resistance gene for CCN by mRNA differentialdisplay PCR and arbitrarily primed PCR fingerprinting of RNA from wheat whichpossess huge and high repeat sequence content genomes. Total 154 differentialexpression bands were separated and second amplified by PCR. The products werenylon membrane. The 102 positive clones were filtrated by reverse northern dot blotand 81 of those were sent to sequence. The EST sequences were submitted toGenbank (Genbank accession: FE192210 - FE192265, FE193048 - FE193074). Thesequences alignment analysis indicated 26 of them were identical with known genes;28 were not found identical sequence in nucleic acid database; another 27 ests wereidentical with some known ests, but their functions were not clear. These ESTsenriched Genbank ESTs database and offered foundation for further research ofresistance gene of CCN.
Resumo:
This work represents the nucleotide sequence of the core histone gene cluster from scallop Chlamys farreri. The tandemly repeated unit of 5671 bp containing a copy of the four core histone genes H4, H2B, H2A and H3 was amplified and identified by the techniques of homology cloning and genomic DNA walking. All the histone genes in the cluster had the structures in their 3' flanking region which related to the evolution of histone gene expression patterns throughout the cell cycle, including two different termination signals, the hairpin structure and at least one AATAAA polyadenylation signal. In their 5' region, the transcription initiation sites with a conserved sequence of 5'-PyATTCPu-3' known as the CAP site were present in all genes except to H2B, generally 37-45 bp upstream of the start code. Canonical TATA and CAAT boxes were identified only in certain histone genes. In the case of the promoters of H2B and H2A genes, there was a 5'-GATCC-3' element, which had been found to be essential to start transcription at the appropriate site. After this element, in the promoter of H2B, there was another sequence, 5'-GGATCGAAACGTTC-3', which was similar to the consensus sequence of 5'-GGAATAAACGTATTC-3' corresponding to the H2B-specific promoter element. The presence of enhancer sequences (5'-TGATATATG-3') was identified from the H4 and H3 genes, matching perfectly with the consensus sequence defined for histone genes. There were several slightly more complex repetitive DNA in the intergene regions. The presence of the series of conserved sequences and reiterated sequences was consistent with the view that mollusc histone gene cluster arose by duplicating of an ancestral precursor histone gene, the birth-and-death evolution model with strong purifying selection enabled the histone cluster less variation and more conserved function. Meanwhile, the H2A and the H2B were demonstrated to be potential good marks for phylogenetic analysis. All the results will be contributed to the characterization of repeating histone gene families in molluscs.