897 resultados para Genetics translocation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacillus anthracis, the etiological agent of anthrax, manifests a particular bimodal lifestyle. This bacterial species alternates between short replication phases of 20-40 generations that strictly require infection of the host, normally causing death, interrupted by relatively long, mostly dormant phases as spores in the environment. Hence, the B. anthracis genome is highly homogeneous. This feature and the fact that strains from nearly all parts of the world have been analysed for canonical single nucleotide polymorphisms (canSNPs) and variable number tandem repeats (VNTRs) has allowed the development of molecular epidemiological and molecular clock models to estimate the age of major diversifications in the evolution of B. anthracis and to trace the global spread of this pathogen, which was mostly promoted by movement of domestic cattle with settlers and by international trade of contaminated animal products. From a taxonomic and phylogenetic point of view, B. anthracis is a member of the Bacillus cereus group. The differentiation of B. anthracis from B. cereus sensu strict, solely based on chromosomal markers, is difficult. However, differences in pathogenicity clearly differentiate B. anthracis from B. cereus and are marked by the strict presence of virulence genes located on the two virulence plasmids pXO1 and pXO2, which both are required by the bacterium to cause anthrax. Conversely, anthrax-like symptoms can also be caused by organisms with chromosomal features that are more closely related to B. cereus, but which carry these virulence genes on two plasmids that largely resemble the B. anthracis virulence plasmids. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several studies have shown a high prevalence of keel bone deformities in commercial laying hens. The aim of this project was to assess the effects of perch material, a vitamin D feed additive (25-hydroxyvitamin D(3); HyD, DSM Nutritional Products, Basel, Switzerland), and genetics on keel bone pathology. The study consisted of 2 experiments. In the first experiment, 4,000 Lohmann Selected Leghorn hens were raised in aviary systems until 18 wk of age. Two factors were investigated: perch material (plastic or rubber-coated metal) and feed (with and without HyD). Afterward, the hens were moved to a layer house with 8 pens with 2 aviary systems. Daily feed consumption, egg production, mortality, and feather condition were evaluated. Every 6 wk, the keel bones of 10 randomly selected birds per pen were palpated and scored. In the second experiment, 2,000 Lohmann Brown (LB) hens and 2,000 Lohmann Brown parent stock (LBPS) hens were raised in a manner identical to the first experiment. During the laying period, the hens were kept in 24 identical floor pens but equipped with different perch material (plastic or rubber-coated metal). The same variables were investigated as in the first experiment. No keel bone deformities were found during the rearing period in either experiment. During the laying period, deformities gradually appeared and reached a prevalence of 35% in the first experiment and 43.8% in the second experiment at the age of 65 and 62 wk, respectively. In the first experiment, neither HyD nor the aviary system had any significant effect on the prevalence of keel bone deformities. In the second experiment, LBPS had significantly fewer moderate and severe deformities than LB, and rubber-coated metal perches were associated with a higher prevalence of keel bone deformities compared with plastic perches. The LBPS laid more but smaller eggs than the LB. Again, HyD did not affect the prevalence of keel bone deformities. However, the significant effect of breed affiliation strongly indicates a sizeable genetic component that may provide a basis for targeted selection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liver cirrhosis is associated with bacterial translocation (BT) and endotoxemia. Most translocating bacteria belong to the common intestinal microbiota, suggesting a breakdown of intestinal barrier function. We hypothesized that diminished mucosal antimicrobial host defense could predispose to BT. Two rodent models of portal hypertension with increased BT were used, CCl(4)-induced ascitic cirrhosis and 2-day portal vein-ligated (PVL) animals. BT was assessed by standard microbiological techniques on mesenteric lymph nodes. Total RNA was isolated systematically throughout the intestinal tract, and expression of Paneth cell α-cryptdins and β-defensins was determined by real-time quantitative polymerase chain reaction (qPCR). To determine functional consequences, mucosal antimicrobial activity was assessed with a fluorescence-activated cell sorting assay. BT was detectable in 40% of rats with cirrhosis. Compared with the group without BT, these animals exhibited diminished intestinal Paneth cell α-cryptdin 5 and 7 expression. In contrast, PVL was associated with BT in all animals but did not affect antimicrobial peptides. The decrease in Paneth cell antimicrobials was most pronounced in the ileum and the coecum. Other antimicrobials showed no changes or even an induction in the case of BT at different sites. Antimicrobial activity toward different commensal strains was reduced, especially in the distal ileum and the cecum in experimental cirrhosis with BT (excluding PVL). Conclusion: Compromised Paneth cell antimicrobial host defense seems to predispose to BT in experimental cirrhosis. Understanding this liver-gut axis including the underlying mechanisms could help us to find new treatment avenues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infection of canine footpads with the canine distemper virus (CDV) can cause massive epidermal thickening (hard pad disease), as a consequence of increased proliferation of keratinocytes and hyperkeratosis. Keratinocytes of canine footpad epidermis containing detectable CDV nucleoprotein antigen and CDV mRNA were shown previously to have increased proliferation indices. Because various proteins that play a role in the proliferation of epidermal cells are viral targets, the potential participation of such proteins in CDV-associated keratinocyte proliferation was investigated. Transforming growth factor-alpha (TGF-alpha), cell cycle regulatory proteins p21, p27 and p53, and nuclear factor (NF)-kappaB transcription factor components p50 and p65 were studied in the footpad epidermis from the following groups of dogs inoculated with CDV: group 1, consisting of seven dogs with clinical distemper and CDV in the footpad epidermis; group 2, consisting of four dogs with clinical distemper but no CDV in the footpad epidermis; group 3, consisting of eight dogs with neither clinical distemper nor CDV in the footpad epithelium. Group 4 consisted of two uninoculated control dogs. The expression of TGF-alpha, p21, p27 and p53, and p50 in the basal layer, lower and upper spinous layers, and in the granular layer did not differ statistically between CDV-positive (group 1) and CDV-negative (groups 2-4) footpad epidermis. However, there were differences in the levels of nuclear and cytoplasmic p65 expression between group 1 dogs and the other three groups. Thus, footpads from group 1 dogs had more keratinocytes containing p65 in the cytoplasm and, conversely, fewer nuclei that were positive for p65. These findings indicate that p65 translocation into the nucleus is reduced in CDV-infected footpad epidermis. Such decreased translocation of p65 may help to explain increased keratinocyte proliferation in hard pad disease and suggests interference of CDV with the NF-kappaB pathway.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have implied that GPIb-IX-V as well as functioning as an adhesion receptor may also induce signaling to mediate binding of platelets to damaged vessel wall to prevent bleeding. Reorganization of the cytoskeleton and redistribution of platelet structural proteins and signaling molecules are thought to be important in this early activation process, though the molecular mechanisms remain to be fully defined. In this study, we have used mucetin, a snake venom lectin protein that activates platelets via GPIb, to study the redistribution of GPIb in platelets. In unstimulated platelets, a minor portion of GPIb localized to Triton-insoluble cytoskeleton fractions (TIC). This portion increased considerably after platelet activation by mucetin. We also find increased contents of the FcRgamma chain in TIC. Anti-GPIb antibodies, mocarhagin or cytochalasin D completely inhibited the cytoskeletal translocation. In addition, BAPTA-AM, a cytoplasmic calcium chelator, strongly inhibited this process. On the other hand, inhibitors of alphaIIbbeta3, PLCgamma, PKC, tyrosine kinases, ADP receptor, PI3-kinase or EDTA are effective in preventing GPIb relocation in convulxin- but not in mucetin-activated platelets. We propose that cytoskeletal translocation of GPIb is upstream of alphaIIbbeta3 activation and cross-linking of GPIb is sufficient to induce this event in mucetin-activated platelets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper (Cu) and its alloys are used extensively in domestic and industrial applications. Cu is also an essential element in mammalian nutrition. Since both copper deficiency and copper excess produce adverse health effects, the dose-response curve is U-shaped, although the precise form has not yet been well characterized. Many animal and human studies were conducted on copper to provide a rich database from which data suitable for modeling the dose-response relationship for copper may be extracted. Possible dose-response modeling strategies are considered in this review, including those based on the benchmark dose and categorical regression. The usefulness of biologically based dose-response modeling techniques in understanding copper toxicity was difficult to assess at this time since the mechanisms underlying copper-induced toxicity have yet to be fully elucidated. A dose-response modeling strategy for copper toxicity was proposed associated with both deficiency and excess. This modeling strategy was applied to multiple studies of copper-induced toxicity, standardized with respect to severity of adverse health outcomes and selected on the basis of criteria reflecting the quality and relevance of individual studies. The use of a comprehensive database on copper-induced toxicity is essential for dose-response modeling since there is insufficient information in any single study to adequately characterize copper dose-response relationships. The dose-response modeling strategy envisioned here is designed to determine whether the existing toxicity data for copper excess or deficiency may be effectively utilized in defining the limits of the homeostatic range in humans and other species. By considering alternative techniques for determining a point of departure and low-dose extrapolation (including categorical regression, the benchmark dose, and identification of observed no-effect levels) this strategy will identify which techniques are most suitable for this purpose. This analysis also serves to identify areas in which additional data are needed to better define the characteristics of dose-response relationships for copper-induced toxicity in relation to excess or deficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cystic fibrosis (CF) is the most common life-shortening autosomal recessive disorder in Caucasians, and is associated with at least one mutation on each CF transmembrane conductance regulator (CFTR) allele. Some patients, however, with only one identifiable point mutation carry on the other allele, a large deletion that is not detected by conventional screening methods. The overall frequency of large deletions in patients with CF is estimated to be 1-3%. Using the CFTR Multiplex Ligation dependent Probe Amplification Kit (MRC-Holland, Amsterdam, Netherlands) that allows the exact detection of copy numbers from all 27 exons in the CFTR gene, we screened 50 patients with only one identified mutation for large deletions in the CFTR gene. Each detected deletion was confirmed using our real-time polymerase chain reaction (PCR) assay and deletion-specific PCR reactions using junction fragment primers. We detected large deletions in eight patients (16%). These eight CF alleles belong to four different deletion types (CFTRindel2, CFTRdele14b-17b, CFTRdele17a-17b and CFTRdele 2-9) whereof the last is novel. Comparing detailed clinical data of all these patients with CF and the molecular genetic findings, we were able to elaborate criteria for deletion screenings and possible genotype-phenotype associations. In conclusion, we agree with other authors that deletion screenings should be implemented in routine genetic diagnostics of CF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When a child is not following the normal, predicted growth curve, an evaluation for underlying illness and central nervous system abnormalities is required and appropriate consideration should be given to genetic defects causing growth hormone (GH) deficiency. This article focuses on the GH gene, the various gene alterations, and their possible impact on the pituitary gland. Transcription factors regulating pituitary gland development may cause multiple pituitary hormone deficiency but may present initially as GH deficiency. The role of two most important transcription factors, POU1F1 (Pit-1) and PROP 1, is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Experimental studies provide evidence that inhaled nanoparticles may translocate over the airspace epithelium and cause increased cellular inflammation. Little is known, however, about the dependence of particle size or material on translocation characteristics, inflammatory response and intracellular localization. RESULTS: Using a triple cell co-culture model of the human airway wall composed of epithelial cells, macrophages and dendritic cells we quantified the entering of fine (1 mum) and nano-sized (0.078 mum) polystyrene particles by laser scanning microscopy. The number distribution of particles within the cell types was significantly different between fine and nano-sized particles suggesting different translocation characteristics. Analysis of the intracellular localization of gold (0.025 mum) and titanium dioxide (0.02-0.03 mum) nanoparticles by energy filtering transmission electron microscopy showed differences in intracellular localization depending on particle composition. Titanium dioxide nanoparticles were detected as single particles without membranes as well as in membrane-bound agglomerations. Gold nanoparticles were found inside the cells as free particles only. The potential of the different particle types (different sizes and different materials) to induce a cellular response was determined by measurements of the tumour necrosis factor-alpha in the supernatants. We measured a 2-3 fold increase of tumour necrosis factor-alpha in the supernatants after applying 1 mum polystyrene particles, gold nanoparticles, but not with polystyrene and titanium dioxide nanoparticles. CONCLUSION: Quantitative laser scanning microscopy provided evidence that the translocation and entering characteristics of particles are size-dependent. Energy filtering transmission electron microscopy showed that the intracellular localization of nanoparticles depends on the particle material. Both particle size and material affect the cellular responses to particle exposure as measured by the generation of tumour necrosis factor-alpha.