890 resultados para Generation Dispatch, Power Generation, Power System Simulation, Wind Energy Integration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first part of this essay aims at investigating the already available and promising technologies for the biogas and bio-hydrogen production from anaerobic digestion of different organic substrates. One strives to show all the peculiarities of this complicate process, such as continuity, number of stages, moisture, biomass preservation and rate of feeding. The main outcome of this part is the awareness of the huge amount of reactor configurations, each of which suitable for a few types of substrate and circumstance. Among the most remarkable results, one may consider first of all the wet continuous stirred tank reactors (CSTR), right to face the high waste production rate in urbanised and industrialised areas. Then, there is the up-flow anaerobic sludge blanket reactor (UASB), aimed at the biomass preservation in case of highly heterogeneous feedstock, which can also be treated in a wise co-digestion scheme. On the other hand, smaller and scattered rural realities can be served by either wet low-rate digesters for homogeneous agricultural by-products (e.g. fixed-dome) or the cheap dry batch reactors for lignocellulose waste and energy crops (e.g. hybrid batch-UASB). The biological and technical aspects raised during the first chapters are later supported with bibliographic research on the important and multifarious large-scale applications the products of the anaerobic digestion may have. After the upgrading techniques, particular care was devoted to their importance as biofuels, highlighting a further and more flexible solution consisting in the reforming to syngas. Then, one shows the electricity generation and the associated heat conversion, stressing on the high potential of fuel cells (FC) as electricity converters. Last but not least, both the use as vehicle fuel and the injection into the gas pipes are considered as promising applications. The consideration of the still important issues of the bio-hydrogen management (e.g. storage and delivery) may lead to the conclusion that it would be far more challenging to implement than bio-methane, which can potentially “inherit” the assets of the similar fossil natural gas. Thanks to the gathered knowledge, one devotes a chapter to the energetic and financial study of a hybrid power system supplied by biogas and made of different pieces of equipment (natural gas thermocatalitic unit, molten carbonate fuel cell and combined-cycle gas turbine structure). A parallel analysis on a bio-methane-fed CCGT system is carried out in order to compare the two solutions. Both studies show that the apparent inconvenience of the hybrid system actually emphasises the importance of extending the computations to a broader reality, i.e. the upstream processes for the biofuel production and the environmental/social drawbacks due to fossil-derived emissions. Thanks to this “boundary widening”, one can realise the hidden benefits of the hybrid over the CCGT system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The demands in production and associate costs at power generation through non renewable resources are increasing at an alarming rate. Solar energy is one of the renewable resource that has the potential to minimize this increase. Utilization of solar energy have been concentrated mainly on heating application. The use of solar energy in cooling systems in building would benefit greatly achieving the goal of non-renewable energy minimization. The approaches of solar energy heating system research done by initiation such as University of Wisconsin at Madison and building heat flow model research conducted by Oklahoma State University can be used to develop and optimize solar cooling building system. The research uses two approaches to develop a Graphical User Interface (GUI) software for an integrated solar absorption cooling building model, which is capable of simulating and optimizing the absorption cooling system using solar energy as the main energy source to drive the cycle. The software was then put through a number of litmus test to verify its integrity. The litmus test was conducted on various building cooling system data sets of similar applications around the world. The output obtained from the software developed were identical with established experimental results from the data sets used. Software developed by other research are catered for advanced users. The software developed by this research is not only reliable in its code integrity but also through its integrated approach which is catered for new entry users. Hence, this dissertation aims to correctly model a complete building with the absorption cooling system in appropriate climate as a cost effective alternative to conventional vapor compression system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis develops an effective modeling and simulation procedure for a specific thermal energy storage system commonly used and recommended for various applications (such as an auxiliary energy storage system for solar heating based Rankine cycle power plant). This thermal energy storage system transfers heat from a hot fluid (termed as heat transfer fluid - HTF) flowing in a tube to the surrounding phase change material (PCM). Through unsteady melting or freezing process, the PCM absorbs or releases thermal energy in the form of latent heat. Both scientific and engineering information is obtained by the proposed first-principle based modeling and simulation procedure. On the scientific side, the approach accurately tracks the moving melt-front (modeled as a sharp liquid-solid interface) and provides all necessary information about the time-varying heat-flow rates, temperature profiles, stored thermal energy, etc. On the engineering side, the proposed approach is unique in its ability to accurately solve – both individually and collectively – all the conjugate unsteady heat transfer problems for each of the components of the thermal storage system. This yields critical system level information on the various time-varying effectiveness and efficiency parameters for the thermal storage system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transformer protection is one of the most challenging applications within the power system protective relay field. Transformers with a capacity rating exceeding 10 MVA are usually protected using differential current relays. Transformers are an aging and vulnerable bottleneck in the present power grid; therefore, quick fault detection and corresponding transformer de-energization is the key element in minimizing transformer damage. Present differential current relays are based on digital signal processing (DSP). They combine DSP phasor estimation and protective-logic-based decision making. The limitations of existing DSP-based differential current relays must be identified to determine the best protection options for sensitive and quick fault detection. The development, implementation, and evaluation of a DSP differential current relay is detailed. The overall goal is to make fault detection faster without compromising secure and safe transformer operation. A detailed background on the DSP differential current relay is provided. Then different DSP phasor estimation filters are implemented and evaluated based on their ability to extract desired frequency components from the measured current signal quickly and accurately. The main focus of the phasor estimation evaluation is to identify the difference between using non-recursive and recursive filtering methods. Then the protective logic of the DSP differential current relay is implemented and required settings made in accordance with transformer application. Finally, the DSP differential current relay will be evaluated using available transformer models within the ATP simulation environment. Recursive filtering methods were found to have significant advantage over non-recursive filtering methods when evaluated individually and when applied in the DSP differential relay. Recursive filtering methods can be up to 50% faster than non-recursive methods, but can cause false trip due to overshoot if the only objective is speed. The relay sensitivity is however independent of filtering method and depends on the settings of the relay’s differential characteristics (pickup threshold and percent slope).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the development of genotyping and next-generation sequencing technologies, multi-marker testing in genome-wide association study and rare variant association study became active research areas in statistical genetics. This dissertation contains three methodologies for association study by exploring different genetic data features and demonstrates how to use those methods to test genetic association hypothesis. The methods can be categorized into in three scenarios: 1) multi-marker testing for strong Linkage Disequilibrium regions, 2) multi-marker testing for family-based association studies, 3) multi-marker testing for rare variant association study. I also discussed the advantage of using these methods and demonstrated its power by simulation studies and applications to real genetic data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a heterogeneous collaborative sensor network for electrical management in the residential sector. Improving demand-side management is very important in distributed energy generation applications. Sensing and control are the foundations of the “Smart Grid” which is the future of large-scale energy management. The system presented in this paper has been developed on a self-sufficient solar house called “MagicBox” equipped with grid connection, PV generation, lead-acid batteries, controllable appliances and smart metering. Therefore, there is a large number of energy variables to be monitored that allow us to precisely manage the energy performance of the house by means of collaborative sensors. The experimental results, performed on a real house, demonstrate the feasibility of the proposed collaborative system to reduce the consumption of electrical power and to increase energy efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing penetration of wind energy into power systems has pushed grid operators to set new requirements for this kind of generating plants in order to keep acceptable and reliable operation of the system. In addition to the low voltage ride through capability, wind farms are required to participate in voltage support, stability enhancement and power quality improvement. This paper presents a solution for wind farms with fixed-speed generators based on the use of STATCOM with braking resistor and additional series impedances, with an adequate control strategy. The focus is put on guaranteeing the grid code compliance when the wind farm faces an extensive series of grid disturbances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Generation of a complete damage energy and dpa cross section library up to 150 MeVbased on JEFF- 3.1.1 and suitable approximations (UPM) Postprocessing of photonuclear libraries (by CCFE) and thermal scattering  tables (by UPM) at the backend of the calculational system (CCFE/UPM)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La energía eólica, así como otras energías renovables, ha experimentado en la última década un gran auge que va extendiéndose alrededor de todo el mundo, cada vez más concienciado de la importancia de las energías renovables como una fuente alternativa de energía. Se han sumado al reto todos los países acogidos al Protocolo de Kyoto, que a fin de reducir emisiones están potenciando la energía eólica como la fuente de energía renovable hoy día más viable para la generación eléctrica. Brasil alcanzó en 2011 los 1.509 MW instalados, lo que representa el 50% de Latinoamérica, seguido por México con el 31%. Las características del sector eléctrico así como un marco legal favorable y el alto potencial eólico, hacen que la perspectiva de crecimiento en este tipo de energía sea muy favorable durante los próximos años, con estimaciones de unos 20.000 MW para 2020. El asentamiento del sector en el país de algunos de los fabricantes más importantes y los avances en cuanto a eficiencia de los aerogeneradores, mayor aprovechamiento de la energía de los vientos menos intensos, amplía las posibles ubicaciones de parques eólicos permitiendo una expansión grande del sector. El parque eólico objeto del proyecto está ubicado en el estado de Rio Grande do Sul, al sur del país, y está constituido por 33 aerogeneradores de 2,0 MW de potencia unitaria, lo que supone una potencia total instalada de 66 MW. La energía eléctrica generada en él será de 272,8 GWh/año. Esta energía se venderá mediante un contrato de compraventa de energía (PPA, Power Purchase Agreement) adjudicado por el gobierno Brasileño en sus sistemas de subasta de energía. En el proyecto se aborda primeramente la selección del emplazamiento del parque eólico a partir de datos de viento de la zona. Estos datos son estudiados para evaluar el potencial eólico y así poder optimizar la ubicación de las turbinas eólicas. Posteriormente se evalúan varios tipos de aerogeneradores para su implantación en el emplazamiento. La elección se realiza teniendo en cuenta las características técnicas de las máquinas y mediante un estudio de la productividad del parque con el aerogenerador correspondiente. Finalmente se opta por el aerogenerador G97-2.0 de GAMESA. La ejecución técnica del parque eólico se realiza de forma que se minimicen los impactos ambientales y de acuerdo a lo establecido en el Estudio de Impacto Ambiental realizado. Este proyecto requiere una inversión de 75,4 M€, financiada externamente en un 80 % y el 20 % con recursos propios del promotor. Del estudio económico-financiero se deduce que el proyecto diseñado es rentable económicamente y viable, tanto desde el punto de vista técnico como financiero. Abstract Wind energy, as well as other renewable energies, has experienced over the last decade a boom that is spreading around the world increasingly aware of the importance of renewable energy as an alternative energy source. All countries that ratified the Kyoto Protocol have joined the challenge promoting wind energy in order to reduce emissions as the more feasible renewable energy for power generation. In 2011 Brazil reached 1509 MW installed, 50% of Latin America, followed by Mexico with 31%. Electric sector characteristics as well as a favorable legal framework and the high wind potential, make the perspective of growth in this kind of energy very positive in the coming years, with estimates of about 20,000 MW by 2020. Some leading manufacturers have settled in the country and improvements in wind turbines efficiency with less intense winds, make higher the number of possible locations for wind farms allowing a major expansion of the sector. The planned wind farm is located in the state of Rio Grande do Sul, in the south of the Brazil, and is made up of 33 wind turbines of 2,0 MW each, representing a total capacity of 66 MW. The electricity generated, 272,8 GWh/year will be sold through a power purchase agreement (PPA) awarded by the Brazilian government in its energy auction systems. The project deals with the site selection of the wind farm from wind data in the area. These data are studied to evaluate the wind potential and thus optimize the location of wind turbines. Then several types of turbines are evaluated for implementation at the site. The choice is made taking into account the technical characteristics of the machines and a study of the productivity of the park with the corresponding turbine. Finally selected wind turbine is Gamesa G97-2.0. The technical implementation of the wind farm is done to minimize environmental impacts as established in the Environmental Impact Study. This project requires an investment of 75,4 M€, financed externally by 80% and 20% with equity from the promoter. The economic-financial study shows that the project is economically viable, both technically and financially.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wind farms have been extensively simulated through engineering models for the estimation of wind speed and power deficits inside wind farms. These models were designed initially for a few wind turbines located in flat terrain. Other models based on the parabolic approximation of Navier Stokes equations were developed, making more realistic and feasible the operational resolution of big wind farms in flat terrain and offshore sites. These models have demonstrated to be accurate enough when solving wake effects for this type of environments. Nevertheless, few analyses exist on how complex terrain can affect the behaviour of wind farm wake flow. Recent numerical studies have demonstrated that topographical wakes induce a significant effect on wind turbines wakes, compared to that on flat terrain. This circumstance has recommended the development of elliptic CFD models which allow global simulation of wind turbine wakes in complex terrain. An accurate simplification for the analysis of wind turbine wakes is the actuator disk technique. Coupling this technique with CFD wind models enables the estimation of wind farm wakes preserving the extraction of axial momentum present inside wind farms. This paper describes the analysis and validation of the elliptical wake model CFDWake 1.0 against experimental data from an operating wind farm located in complex terrain. The analysis also reports whether it is possible or not to superimpose linearly the effect of terrain and wind turbine wakes. It also represents one of the first attempts to observe the performance of engineering models compares in large complex terrain wind farms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coupling between solar light radiation and laser rod medium in a solar pumped laser affects the efficiency of the laser. To optimize the pumping system, simulation of the two-stage pumping system with a Fresnel lens and conic pumping cavity is carried out with Tracepro software. According to the power density distribution along the axis at focal place of the Fresnel lens, the diameter and position of the pumping cavity window and the distance of the window from the Fresnel lens are optimized. The power density distributions along the laser rod axis of different cavity lengths and different cavity tapers are also analyzed. The optimal structure of taper cavity is obtained. The mirror relecting cavity and ceramic cavity are introduced in detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Short-term variability in the power generated by large grid-connected photovoltaic (PV) plants can negatively affect power quality and the network reliability. New grid-codes require combining the PV generator with some form of energy storage technology in order to reduce short-term PV power fluctuation. This paper proposes an effective method in order to calculate, for any PV plant size and maximum allowable ramp-rate, the maximum power and the minimum energy storage requirements alike. The general validity of this method is corroborated with extensive simulation exercises performed with real 5-s one year data of 500 kW inverters at the 38.5 MW Amaraleja (Portugal) PV plant and two other PV plants located in Navarra (Spain), at a distance of more than 660 km from Amaraleja.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical power systems are changing their traditional structure, which was based on a little number of large generating power plants placed at great distances from loads by new models that tend to split the big production nodes in many smaller ones. The set of small groups which are located close to consumers and provide safe and quality energy is called distributed generation (DG). The proximity of the sources to the loads reduces losses associated with transportation and increases overall system efficiency. DG also favors the inclusion of renewable energy sources in isolated electrical systems or remote microgrids, because they can be installed where the natural resource is located. In both cases, as weak grids unable to get help from other nearby networks, it is essential to ensure appropriate behavior of DG sources to guarantee power system safety and stability. The grid codes sets out the technical requirements to be fulfilled for the sources connected in these electrical networks. In technical literature it is rather easy to find and compare grid codes for interconnected electrical systems. However, the existing literature is incomplete and sparse regarding isolated electrical systems and this happens due to the difficulties inherent in the pursuit of codes. Some countries have developed their own legislation only for their island territory (as Spain or France), others apply the same set of rules as in mainland, another group of island countries have elaborated a complete grid code for all generating sources and some others lack specific regulation. This paper aims to make a complete review of the state of the art in grid codes applicable to isolated systems, setting the comparison between them and defining the guidelines predictably followed by the upcoming regulations in these particular systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El presente trabajo se enmarca en el ámbito de la eficiencia energética y contempla la gestión del consumo eléctrico en hogares. Concretamente, para este proyecto fin de grado se propone el desarrollo de un sistema informático que permita el análisis y monitorización del consumo eléctrico y optimización en la contratación del suministro eléctrico en el hogar. El sistema desarrollado permite la monitorización del consumo eléctrico, expresado en kilovatios-hora (kWh), y la monitorización del coste real de dicho consumo, expresado en euros, en función del tipo de tarifa que se tenga contratada en la modalidad del PVPC1 (Precio Voluntario para el Pequeño Consumidor). También se ha desarrollado una interfaz web a través de la cual el usuario tiene acceso a la información y datos del sistema. En dicha web se muestran gráficas de consumo, potencia, voltaje, corriente y coste de la energía por días. Además, se ha dotado al sistema de un generador de alertas que notifica al usuario, vía web y vía correo electrónico, cuando el consumo sobrepasa los límites fijados por él mismo. El usuario, por tanto, podrá definir los valores de alerta de sobreconsumo y visualizar tanto un histórico de las alertas generadas en el pasado como las alertas activas en ese momento. Las alertas se muestran en la gráfica correspondiente dentro de la aplicación web. Por último, se dispone de la opción de exportar las gráficas que son visualizadas en la aplicación web en formato PNG, JPEG, PDF y SVG, además de la posibilidad de imprimirla.---ABSTRACT---This project belongs to the Energy Efficiency field and is aimed at home energy management. Specifically, for this thesis the development of a computer system that allows monitoring and analysis of energy consumption and contracted power optimization is proposed. The developed system allows energy consumption management within households (expressed in kilowatts per hour, kWh) and real cost monitoring (in euros) according to the contract tariff. A web interface has been developed in order to provide the user with power consumption information and control energy tools. In this web application, electric consumption, power, voltage, current and energy cost by day are shown. Besides, an alert generation system has been implemented so that the user can define maximum power consumption values and be informed through email or web when these values are exceeded. The user will be able to check older power alerts as well as the currently active ones. These alerts are shown in a specific graph within the web application. Finally, the user generated graphs can be exported from the web using PNG, JPEG, PDF or SVG image formats as well as be printed from the web.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La industria de la energía eólica marina ha crecido de forma significativa durante los últimos 15 años, y se espera que siga creciendo durante los siguientes. La construcción de torres en aguas cada vez más profundas y el aumento en potencia y tamaño de las turbinas han creado la necesidad de diseñar estructuras de soporte cada vez más fiables y optimizadas, lo que requiere un profundo conocimiento de su comportamiento. Este trabajo se centra en la respuesta dinámica de una turbina marina con cimentación tipo monopilote y sobre la que actúa la fuerza del viento. Se han realizado cálculos con distintas propiedades del suelo para cubrir un rango de rigideces que va desde una arena muy suelta a una muy densa. De este modo se ha analizado la influencia que tiene la rigidez del suelo en el comportamiento de la estructura. Se han llevado a cabo análisis estáticos y dinámicos en un modelo de elementos finitos implementado en Abaqus. El desplazamiento en la cabeza de la torre y la tensión en su base se han obtenido en función de la rigidez del suelo, y con ellos se ha calculado la amplificación dinámica producida cuando la frecuencia natural del sistema suelo‐cimentación torre se aproxima a la frecuencia de la carga. Dos diferentes enfoques a la hora de modelizar el suelo se han comparado: uno utilizando elementos continuos y otro utilizando muelles elásticos no lineales. Por último, un análisis de fiabilidad se ha llevado a cabo con un modelo analítico para calcular la probabilidad de resonancia del sistema, en el que se han considerado las propiedades de rigidez del suelo como variables aleatorias. Offshore wind energy industry has experienced a significant growth over the past 15 years, and it is expected to continue its growth in the coming years. The expansion to increasingly deep waters and the rise in power and size of the turbines have led to a need for more reliable and optimized support designs, which requires an extensive knowledge of the behaviour of these structures. This work focuses on the dynamic response of an offshore wind turbine founded on a monopile and subjected to wind loading. Different soil properties have been considered in order to cover the range of stiffness from a very loose to a very dense sand. In this way, the influence of stiffness on the structure behaviour has been assessed. Static and dynamic analyses have been carried out by means of a finite element model implemented in Abaqus. Head displacement and stress at the tower base have been obtained as functions of soil stiffness, and they have been used to calculate the dynamic amplification that is produced when the natural frequency of the system soil‐foundation‐tower approaches the load frequency. Two different approaches of soil modelling have been compared: soil modelled as a continuum and soil simulated with non linear elastic springs. Finally, a reliability analysis to assess the probability of resonance has been performed with an analytical model, in which soil stiffness properties are considered as stochastic variables.