922 resultados para Generalized Functions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is considered a multifunctional protein with defined functions in numerous mammalian cellular processes. GAPDH functional diversity depends on various factors such as covalent modifications, subcellular localization, oligomeric state and intracellular concentration of substrates or ligands, as well as protein-protein interactions. In bacteria, alternative GAPDH functions have been associated with its extracellular location in pathogens or probiotics. In this study, new intracellular functions of E. coli GAPDH were investigated following a proteomic approach aimed at identifying interacting partners using in vivo formaldehyde cross-linking followed by mass spectrometry. The identified proteins were involved in metabolic processes, protein synthesis and folding or DNA repair. Some interacting proteins were also identified in immunopurification experiments in the absence of cross-linking. Pull-down experiments and overlay immunoblotting were performed to further characterize the interaction with phosphoglycolate phosphatase (Gph). This enzyme is involved in the metabolism of 2-phosphoglycolate formed in the DNA repair of 3"-phosphoglycolate ends generated by bleomycin damage. We show that interaction between Gph and GAPDH increases in cells challenged with bleomycin, suggesting involvement of GAPDH in cellular processes linked to DNA repair mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flood simulation studies use spatial-temporal rainfall data input into distributed hydrological models. A correct description of rainfall in space and in time contributes to improvements on hydrological modelling and design. This work is focused on the analysis of 2-D convective structures (rain cells), whose contribution is especially significant in most flood events. The objective of this paper is to provide statistical descriptors and distribution functions for convective structure characteristics of precipitation systems producing floods in Catalonia (NE Spain). To achieve this purpose heavy rainfall events recorded between 1996 and 2000 have been analysed. By means of weather radar, and applying 2-D radar algorithms a distinction between convective and stratiform precipitation is made. These data are introduced and analyzed with a GIS. In a first step different groups of connected pixels with convective precipitation are identified. Only convective structures with an area greater than 32 km2 are selected. Then, geometric characteristics (area, perimeter, orientation and dimensions of the ellipse), and rainfall statistics (maximum, mean, minimum, range, standard deviation, and sum) of these structures are obtained and stored in a database. Finally, descriptive statistics for selected characteristics are calculated and statistical distributions are fitted to the observed frequency distributions. Statistical analyses reveal that the Generalized Pareto distribution for the area and the Generalized Extreme Value distribution for the perimeter, dimensions, orientation and mean areal precipitation are the statistical distributions that best fit the observed ones of these parameters. The statistical descriptors and the probability distribution functions obtained are of direct use as an input in spatial rainfall generators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extreme weight conditions (EWC) groups along a continuum may share some biological risk factors and intermediate neurocognitive phenotypes. A core cognitive trait in EWC appears to be executive dysfunction, with a focus on decision making, response inhibition and cognitive flexibility. Differences between individuals in these areas are likely to contribute to the differences in vulnerability to EWC. The aim of the study was to investigate whether there is a common pattern of executive dysfunction in EWC while comparing anorexia nervosa patients (AN), obese subjects (OB) and healthy eating/weight controls (HC).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The local thermodynamics of a system with long-range interactions in d dimensions is studied using the mean-field approximation. Long-range interactions are introduced through pair interaction potentials that decay as a power law in the interparticle distance. We compute the local entropy, Helmholtz free energy, and grand potential per particle in the microcanonical, canonical, and grand canonical ensembles, respectively. From the local entropy per particle we obtain the local equation of state of the system by using the condition of local thermodynamic equilibrium. This local equation of state has the form of the ideal gas equation of state, but with the density depending on the potential characterizing long-range interactions. By volume integration of the relation between the different thermodynamic potentials at the local level, we find the corresponding equation satisfied by the potentials at the global level. It is shown that the potential energy enters as a thermodynamic variable that modifies the global thermodynamic potentials. As a result, we find a generalized Gibbs-Duhem equation that relates the potential energy to the temperature, pressure, and chemical potential. For the marginal case where the power of the decaying interaction potential is equal to the dimension of the space, the usual Gibbs-Duhem equation is recovered. As examples of the application of this equation, we consider spatially uniform interaction potentials and the self-gravitating gas. We also point out a close relationship with the thermodynamics of small systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vitro differentiation of mesenchymal stromal cells (MSC) into osteocytes (human differentiated osteogenic cells, hDOC) before implantation has been proposed to optimize bone regeneration. However, a deep characterization of the immunological properties of DOC, including their effect on dendritic cell (DC) function, is not available. DOC can be used either as cellular suspension (detached, Det-DOC) or as adherent cells implanted on scaffolds (adherent, Adh-DOC). By mimicking in vitro these two different routes of administration, we show that both Det-DOC and Adh-DOC can modulate DC functions. Specifically, the weak downregulation of CD80 and CD86 caused by Det-DOC on DC surface results in a weak modulation of DC functions, which indeed retain a high capacity to induce T-cell proliferation and to generate CD4(+)CD25(+)Foxp3(+) T cells. Moreover, Det-DOC enhance the DC capacity to differentiate CD4(+)CD161(+)CD196(+) Th17-cells by upregulating IL-6 secretion. Conversely, Adh-DOC strongly suppress DC functions by a profound downregulation of CD80 and CD86 on DC as well as by the inhibition of TGF-β production. In conclusion, we demonstrate that different types of DOC cell preparation may have a different impact on the modulation of the host immune system. This finding may have relevant implications for the design of cell-based tissue-engineering strategies.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Wiener system is a linear time-invariant filter, followed by an invertible nonlinear distortion. Assuming that the input signal is an independent and identically distributed (iid) sequence, we propose an algorithm for estimating the input signal only by observing the output of the Wiener system. The algorithm is based on minimizing the mutual information of the output samples, by means of a steepest descent gradient approach.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the induced generalized ordered weighted averaging (IGOWA) operator. It is a new aggregation operator that generalizes the OWA operator by using the main characteristics of two well known aggregation operators: the generalized OWA and the induced OWA operator. Then, this operator uses generalized means and order inducing variables in the reordering process. With this formulation, we get a wide range of aggregation operators that include all the particular cases of the IOWA and the GOWA operator, and a lot of other cases such as the induced ordered weighted geometric (IOWG) operator and the induced ordered weighted quadratic averaging (IOWQA) operator. We further generalize the IGOWA operator by using quasi-arithmetic means. The result is the Quasi-IOWA operator. Finally, we also develop a numerical example of the new approach in a financial decision making problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main challenge for gaining biological insights from genetic associations is identifying which genes and pathways explain the associations. Here we present DEPICT, an integrative tool that employs predicted gene functions to systematically prioritize the most likely causal genes at associated loci, highlight enriched pathways and identify tissues/cell types where genes from associated loci are highly expressed. DEPICT is not limited to genes with established functions and prioritizes relevant gene sets for many phenotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis studies role based access control and its suitability in the enterprise environment. The aim is to research how extensively role based access control can be implemented in the case organization and how it support organization’s business and IT functions. This study points out the enterprise’s needs for access control, factors of access control in the enterprise environment and requirements for implementation and the benefits and challenges it brings along. To find the scope how extensively role based access control can be implemented into the case organization, firstly is examined the actual state of access control. Secondly is defined a rudimentary desired state (how things should be) and thirdly completed it by using the results of the implementation of role based access control application. The study results the role model for case organization unit, and the building blocks and the framework for the organization wide implementation. Ultimate value for organization is delivered by facilitating the normal operations of the organization whilst protecting its information assets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in machine learning methods enable increasingly the automatic construction of various types of computer assisted methods that have been difficult or laborious to program by human experts. The tasks for which this kind of tools are needed arise in many areas, here especially in the fields of bioinformatics and natural language processing. The machine learning methods may not work satisfactorily if they are not appropriately tailored to the task in question. However, their learning performance can often be improved by taking advantage of deeper insight of the application domain or the learning problem at hand. This thesis considers developing kernel-based learning algorithms incorporating this kind of prior knowledge of the task in question in an advantageous way. Moreover, computationally efficient algorithms for training the learning machines for specific tasks are presented. In the context of kernel-based learning methods, the incorporation of prior knowledge is often done by designing appropriate kernel functions. Another well-known way is to develop cost functions that fit to the task under consideration. For disambiguation tasks in natural language, we develop kernel functions that take account of the positional information and the mutual similarities of words. It is shown that the use of this information significantly improves the disambiguation performance of the learning machine. Further, we design a new cost function that is better suitable for the task of information retrieval and for more general ranking problems than the cost functions designed for regression and classification. We also consider other applications of the kernel-based learning algorithms such as text categorization, and pattern recognition in differential display. We develop computationally efficient algorithms for training the considered learning machines with the proposed kernel functions. We also design a fast cross-validation algorithm for regularized least-squares type of learning algorithm. Further, an efficient version of the regularized least-squares algorithm that can be used together with the new cost function for preference learning and ranking tasks is proposed. In summary, we demonstrate that the incorporation of prior knowledge is possible and beneficial, and novel advanced kernels and cost functions can be used in algorithms efficiently.