854 resultados para GLUCOSE MONITORING-SYSTEM


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Placental Uric Acid Transport System: Glucose Transporter 9 (SLC2A9). INTRODUCTION: Pre-eclampsia, a pregnancy-specific disease, contributes substantially to perinatal morbidity and mortality of both the mother and her child. Pre-eclampsia is often associated with high maternal urate serum levels, which in turn has been shown to play a role in the pathogenesis of this disease. The aim of this study was to investigate the glucose transporter GLUT9-mediated placental uric acid transport system. METHODS: In this study western blot, immunofluorescence techniques as well as a transepithelial transport (Transwell) model were used to assess GLUT9 protein expression and, respectively, uric acid transport activity. Electrophysiological techniques and transmission electron microscopy (TEM) were used to characterize the properties and the structure of GLUT9. RESULTS: Uric acid is transported across a BeWo choriocarcinoma cell monolayer with 530 pmol/min. We could successfully overexpress and for the first time purify the GLUT9b isoform using the Xenopus laevis oocytes expression system. Chloride seems to modulate the urate transport system. TEM revealed that GLUT9b isoform is present as monomer and dimmer in the Xenopus laevis overexpression model. A class average of all the particles allowed us to develop a first model of human GLUT9b structure, which was derived from the published crystal structure of the bacterial homologue of GLUT1-4. CONCLUSIONS: In vitro the “materno-fetal” transport of uric acid is slow indicating that in vivo the fetus might be protected from short-term fluctuations of maternal urate serum levels. The low-resolution structure obtained from TEM validates the proposed homology model regarding the structure of human GLUT9b. In ongoing studies this model is used to perform virtual screening to identify novel modulators of the urate transport system enabling the development of novel therapies in pregnancy complications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

ntroduction: The ProAct study has shown that a pump switch to the Accu-Chek® Combo system (Roche Diagnostics Deutschland GmbH, Mannheim, Germany) in type 1 diabetes patients results in stable glycemic control with significant improvements in glycated hemoglobin (HbA1c) in patients with unsatisfactory baseline HbA1c and shorter pump usage time. Patients and Methods: In this post hoc analysis of the ProAct database, we investigated the glycemic control and glycemic variability at baseline by determination of several established parameters and scores (HbA1c, hypoglycemia frequency, J-score, Hypoglycemia and Hyperglycemia Indexes, and Index of Glycemic Control) in participants with different daily bolus and blood glucose measurement frequencies (less than four day, four or five per day, and more than five per day, in both cases). The data were derived from up to 299 patients (172 females, 127 males; age [mean±SD], 39.4±15.2 years; pump treatment duration, 7.0±5.2 years). Results: Participants with frequent glucose readings had better glycemic control than those with few readings (more than five readings per day vs. less than four readings per day: HbA1c, 7.2±1.1% vs. 8.0±0.9%; mean daily blood glucose, 151±22 mg/dL vs. 176±30 mg/dL; percentage of readings per month >300 mg/dL, 10±4% vs. 14±5%; percentage of readings in target range [80-180 mg/dL], 59% vs. 48% [P<0.05 in all cases]) and had a lower glycemic variability (J-score, 49±13 vs. 71±25 [P<0.05]; Hyperglycemia Index, 0.9±0.5 vs. 1.9±1.2 [P<0.05]; Index of Glycemic Control, 1.9±0.8 vs. 3.1±1.6 [P<0.05]; Hypoglycemia Index, 0.9±0.8 vs. 1.2±1.3 [not significant]). Frequent self-monitoring of blood glucose was associated with a higher number of bolus applications (6.1±2.2 boluses/day vs. 4.5±2.0 boluses/day [P<0.05]). Therefore, a similar but less pronounced effect on glycemic variability in favor of more daily bolus applications was observed (more than five vs. less than four bolues per day: J-score, 57±17 vs. 63±25 [not significant]; Hypoglycemia Index, 1.0±1.0 vs. 1.5±1.4 [P<0.05]; Hyperglycemia Index, 1.3±0.6 vs. 1.6±1.1 [not significant]; Index of Glycemic Control, 2.3±1.1 vs. 3.1±1.7 [P<0.05]). Conclusions: Pump users who perform frequent daily glucose readings have a better glycemic control with lower glycemic variability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The role for the novel treatment approach of sodium-glucose cotransporter-2 (SGLT-2) in type 2 diabetes is increasing. Structured self-monitoring of blood glucose (SMBG), based on a less intensive and a more intensive scheme, may contribute to an optimization of SGLT-2 inhibitor based treatment. The current expert recommendation suggests individualized approaches of SMBG, using simple and clinically applicable schemes. Potential benefits of SMBG in SGLT-2 inhibitor based treatment approaches are early assessment of treatment success or failure, timely modification of treatment, detection of hypoglycemic episodes, assessment of glucose excursions, and support of diabetes management and education. The length and frequency of SMBG should depend on the clinical setting and the quality of metabolic control.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Bioluminescence imaging is widely used for cell-based assays and animal imaging studies, both in biomedical research and drug development. Its main advantages include its high-throughput applicability, affordability, high sensitivity, operational simplicity, and quantitative outputs. In malaria research, bioluminescence has been used for drug discovery in vivo and in vitro, exploring host-pathogen interactions, and studying multiple aspects of Plasmodium biology. While the number of fluorescent proteins available for imaging has undergone a great expansion over the last two decades, enabling simultaneous visualization of multiple molecular and cellular events, expansion of available luciferases has lagged behind. The most widely used bioluminescent probe in malaria research is the Photinus pyralis firefly luciferase, followed by the more recently introduced Click-beetle and Renilla luciferases. Ultra-sensitive imaging of Plasmodium at low parasite densities has not been previously achieved. With the purpose of overcoming these challenges, a Plasmodium berghei line expressing the novel ultra-bright luciferase enzyme NanoLuc, called PbNLuc has been generated, and is presented in this work. RESULTS: NanoLuc shows at least 150 times brighter signal than firefly luciferase in vitro, allowing single parasite detection in mosquito, liver, and sexual and asexual blood stages. As a proof-of-concept, the PbNLuc parasites were used to image parasite development in the mosquito, liver and blood stages of infection, and to specifically explore parasite liver stage egress, and pre-patency period in vivo. CONCLUSIONS: PbNLuc is a suitable parasite line for sensitive imaging of the entire Plasmodium life cycle. Its sensitivity makes it a promising line to be used as a reference for drug candidate testing, as well as the characterization of mutant parasites to explore the function of parasite proteins, host-parasite interactions, and the better understanding of Plasmodium biology. Since the substrate requirements of NanoLuc are different from those of firefly luciferase, dual bioluminescence imaging for the simultaneous characterization of two lines, or two separate biological processes, is possible, as demonstrated in this work.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A three-level satellite to ground monitoring scheme for conservation easement monitoring has been implemented in which high-resolution imagery serves as an intermediate step for inspecting high priority sites. A digital vertical aerial camera system was developed to fulfill the need for an economical source of imagery for this intermediate step. A method for attaching the camera system to small aircraft was designed, and the camera system was calibrated and tested. To ensure that the images obtained were of suitable quality for use in Level 2 inspections, rectified imagery was required to provide positional accuracy of 5 meters or less to be comparable to current commercially available high-resolution satellite imagery. Focal length calibration was performed to discover the infinity focal length at two lens settings (24mm and 35mm) with a precision of O.1mm. Known focal length is required for creation of navigation points representing locations to be photographed (waypoints). Photographing an object of known size at distances on a test range allowed estimates of focal lengths of 25.lmm and 35.4mm for the 24mm and 35mm lens settings, respectively. Constants required for distortion removal procedures were obtained using analytical plumb-line calibration procedures for both lens settings, with mild distortion at the 24mm setting and virtually no distortion found at the 35mm setting. The system was designed to operate in a series of stages: mission planning, mission execution, and post-mission processing. During mission planning, waypoints were created using custom tools in geographic information system (GIs) software. During mission execution, the camera is connected to a laptop computer with a global positioning system (GPS) receiver attached. Customized mobile GIs software accepts position information from the GPS receiver, provides information for navigation, and automatically triggers the camera upon reaching the desired location. Post-mission processing (rectification) of imagery for removal of lens distortion effects, correction of imagery for horizontal displacement due to terrain variations (relief displacement), and relating the images to ground coordinates were performed with no more than a second-order polynomial warping function. Accuracy testing was performed to verify the positional accuracy capabilities of the system in an ideal-case scenario as well as a real-world case. Using many welldistributed and highly accurate control points on flat terrain, the rectified images yielded median positional accuracy of 0.3 meters. Imagery captured over commercial forestland with varying terrain in eastern Maine, rectified to digital orthophoto quadrangles, yielded median positional accuracies of 2.3 meters with accuracies of 3.1 meters or better in 75 percent of measurements made. These accuracies were well within performance requirements. The images from the digital camera system are of high quality, displaying significant detail at common flying heights. At common flying heights the ground resolution of the camera system ranges between 0.07 meters and 0.67 meters per pixel, satisfying the requirement that imagery be of comparable resolution to current highresolution satellite imagery. Due to the high resolution of the imagery, the positional accuracy attainable, and the convenience with which it is operated, the digital aerial camera system developed is a potentially cost-effective solution for use in the intermediate step of a satellite to ground conservation easement monitoring scheme.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Intraoral devices for bite-force sensing have several applications in odontology and maxillofacial surgery, as bite-force measurements provide additional information to help understand the characteristics of bruxism disorders and can also be of help for the evaluation of post-surgical evolution and for comparison of alternative treatments. A new system for measuring human bite forces is proposed in this work. This system has future applications for the monitoring of bruxism events and as a complement for its conventional diagnosis. Bruxism is a pathology consisting of grinding or tight clenching of the upper and lower teeth, which leads to several problems such as lesions to the teeth, headaches, orofacial pain and important disorders of the temporomandibular joint. The prototype uses a magnetic field communication scheme similar to low-frequency radio frequency identification (RFID) technology (NFC). The reader generates a low-frequency magnetic field that is used as the information carrier and powers the sensor. The system is notable because it uses an intra-mouth passive sensor and an external interrogator, which remotely records and processes information regarding a patient?s dental activity. This permits a quantitative assessment of bite-force, without requiring intra-mouth batteries, and can provide supplementary information to polysomnographic recordings, current most adequate early diagnostic method, so as to initiate corrective actions before irreversible dental wear appears. In addition to describing the system?s operational principles and the manufacture of personalized prototypes, this report will also demonstrate the feasibility of the system and results from the first in vitro and in vivo trials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Structural Health Monitoring (SHM) requires integrated "all in one" electronic devices capable of performing analysis of structural integrity and on-board damage detection in aircraft?s structures. PAMELA III (Phased Array Monitoring for Enhanced Life Assessment, version III) SHM embedded system is an example of this device type. This equipment is capable of generating excitation signals to be applied to an array of integrated piezoelectric Phased Array (PhA) transducers stuck to aircraft structure, acquiring the response signals, and carrying out the advanced signal processing to obtain SHM maps. PAMELA III is connected with a host computer in order to receive the configuration parameters and sending the obtained SHM maps, alarms and so on. This host can communicate with PAMELA III through an Ethernet interface. To avoid the use of wires where necessary, it is possible to add Wi-Fi capabilities to PAMELA III, connecting a Wi-Fi node working as a bridge, and to establish a wireless communication between PAMELA III and the host. However, in a real aircraft scenario, several PAMELA III devices must work together inside closed structures. In this situation, it is not possible for all PAMELA III devices to establish a wireless communication directly with the host, due to the signal attenuation caused by the different obstacles of the aircraft structure. To provide communication among all PAMELA III devices and the host, a wireless mesh network (WMN) system has been implemented inside a closed aluminum wingbox. In a WMN, as long as a node is connected to at least one other node, it will have full connectivity to the entire network because each mesh node forwards packets to other nodes in the network as required. Mesh protocols automatically determine the best route through the network and can dynamically reconfigure the network if a link drops out. The advantages and disadvantages on the use of a wireless mesh network system inside closed aerospace structures are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A fully integrated on-board electronic system that can perform in-situ structural health monitoring (SHM) of aircraft?s structures using specifically designed equipment for SHM based on guided wave ultrasonic method or Lamb waves? method is introduced. This equipment is called Phased Array Monitoring for Enhanced Life Assessment (PAMELA III) and is an essential part of overall PAMELA SHM? system. PAMELA III can generate any kind of excitation signals, acquire the response signals that propagate throughout the structure being tested, and perform the signal processing for damage detection directly on the structure without need to send the huge amount of raw signals but only the final SHM maps. It monitors the structure by means of an array of integrated Phased Array (PhA) transducers preferably bonded onto the host structure. The PAMELA III hardware for SHM mapping has been designed, built and subjected to laboratory tests, using aluminum and CFRP structures. The 12 channel system has been designed to be low weight (265 grams only), to have a small form factor, to be directly mounted above the integrated PhA transducers without need for cables and to be EMI protected so that the equipment can be taken on board an aircraft to perform required SHM analyses by use of embedded SHM algorithms. Moreover, the autonomous, automatic and on real-time working procedure makes it suitable for the avionic field, sending the corresponding alerts, maps and reports to external equipment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Structural health monitoring (SHM) systems have excellent potential to improve the regular operation and maintenance of structures. Wireless networks (WNs) have been used to avoid the high cost of traditional generic wired systems. The most important limitation of SHM wireless systems is time-synchronization accuracy, scalability, and reliability. A complete wireless system for structural identification under environmental load is designed, implemented, deployed, and tested on three different real bridges. Our contribution ranges from the hardware to the graphical front end. System goal is to avoid the main limitations of WNs for SHM particularly in regard to reliability, scalability, and synchronization. We reduce spatial jitter to 125 ns, far below the 120 μs required for high-precision acquisition systems and much better than the 10-μs current solutions, without adding complexity. The system is scalable to a large number of nodes to allow for dense sensor coverage of real-world structures, only limited by a compromise between measurement length and mandatory time to obtain the final result. The system addresses a myriad of problems encountered in a real deployment under difficult conditions, rather than a simulation or laboratory test bed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work introduces a web-based learning environment to facilitate learning in Project Management. The proposed web-based support system integrates methodological procedures and information systems, allowing to promote learning among geographically-dispersed students. Thus, students who are enrolled in different universities at different locations and attend their own project management courses, share a virtual experience in executing and managing projects. Specific support systems were used or developed to automatically collect information about student activities, making it possible to monitor the progress made on learning and assess learning performance as established in the defined rubric.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper summarizes the experience and the lessons learned from the European project PERFORM (A sophisticated multi-parametric system FOR the continuous effective assessment and monitoring of motor status in Parkinson's disease and other neurodegenerative diseases). PERFORM is aimed to provide a telehealth system for the remote monitoring of Parkinson's disease patients (PD) at their homes. This paper explains the global experience with PERFORM. It summarizes the technical performance of the system and the feedback received from the patients in terms of usability and wearability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper summarizes the experience and the lessons learned from the European project PERFORM (A sophisticated multi-parametric system FOR the continuous effective assessment and monitoring of motor status in Parkinson s disease and other neurodegenerative diseases). PERFORM is aimed to provide a telehealth system for the remote monitoring of Parkinson s disease patients (PD) at their homes. This paper explains the global experience with PERFORM. It summarizes the technical performance of the system and the feedback received from the patients in terms of usability and wearability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes the experimental set up of a system composed by a set of wearable sensors devices for the recording of the motion signals and software algorithms for the signal analysis. This system is able to automatically detect and assess the severity of bradykinesia, tremor, dyskinesia and akinesia motor symptoms. Based on the assessment of the akinesia, the ON-OFF status of the patient is determined for each moment. The assessment performed through the automatic evaluation of the akinesia is compared with the status reported by the patients in their diaries. Preliminary results with a total recording period of 32 hours with two PD patients are presented, where a good correspondence (88.2 +/- 3.7 %) was observed. Best (93.7 por ciento) and worst (87 por ciento) correlation results are illustrated, together with the analysis of the automatic assessment of the akinesia symptom leading to the status determination. The results obtained are promising, and if confirmed with further data, this automatic assessment of PD motor symptoms will lead to a better adjustment of medication dosages and timing, cost savings and an improved quality of life of the patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The performance of an amperometric biosensor, consisting of a subcutaneously implanted miniature (0.29 mm diameter, 5 × 10−4 cm2 mass transporting area), 90 s 10–90% rise/decay time glucose electrode, and an on-the-skin electrocardiogram Ag/AgCl electrode was tested in an unconstrained, naturally diabetic, brittle, type I, insulin-dependent chimpanzee. The chimpanzee was trained to wear on her wrist a small electronic package and to present her heel for capillary blood samples. In five sets of measurements, averaging 5 h each, 82 capillary blood samples were assayed, their concentrations ranging from 35 to 400 mg/dl. The current readings were translated to blood glucose concentration by assaying, at t = 1 h, one blood sample for each implanted sensor. The rms error in the correlation between the sensor-measured glucose concentration and that in capillary blood was 17.2%, 4.9% above the intrinsic 12.3% rms error of the Accu-Chek II reference, through which the illness of the chimpanzee was routinely managed. Linear regression analysis of the data points taken at t>1 h yielded the relationship (Accu-Chek) = 0.98 × (implanted sensor) + 4.2 mg/dl, r2 = 0.94. The capillary blood and the subcutaneous glucose concentrations were statistically indistinguishable when the rate of change was less than 1 mg/(dl⋅min). However, when the rate of decline exceeded 1.8 mg/(dl⋅min) after insulin injection, the subcutaneous glucose concentration was transiently higher.